187
Views
4
CrossRef citations to date
0
Altmetric
Review

Review: brain neurobiology of gambling disorder based on rodent models

ORCID Icon
Pages 1751-1770 | Published online: 02 Jul 2019

References

  • Lemieux A, al’Absi M. Stress psychobiology in the context of addiction medicine: from drugs of abuse to behavioral addictions. Prog Brain Res. 2016;223:43–62. doi:10.1016/bs.pbr.2015.08.00126806770
  • Grant JE, Odlaug BL, Chamberlain SR. Neural and psychological underpinnings of gambling disorder: a review. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:188–193. doi:10.1016/j.pnpbp.2015.10.00726497079
  • Alguacil LF, González-Martin C. Target identification and validation in brain reward dysfunction. Drug Discov Today. 2015;20(3):347–352. doi:10.1016/j.drudis.2014.10.01425541474
  • Winstanley CA, Clark L. Translational models of gambling-related decision-making. Curr Top Behav Neurosci. 2016;28:93–120. doi:10.1007/7854_2015_501427418069
  • Norbury A, Husain M. Sensation-seeking: dopaminergic modulation and risk for psychopathology. Behav Brain Res. 2015;288:79–93. doi:10.1016/j.bbr.2015.04.01525907745
  • Quintero GC. A biopsychological review of gambling disorder. Neuropsychiatr Dis Treat. 2017;13:51–60. doi:10.2147/NDT.S11881828096672
  • Potenza MN, Kosten TR, Rounsaville BJ. Pathological gambling. Jama. 2001;286(2):141–144.11448261
  • National Opinion Research Center. Gambling Impact and Behavior Study. Chicago: NORC Chicago; 1999 Available from: http://www.norc.org/PDFs/publications/GIBSFinalReportApril1999.pdf. Accessed November 20, 2018.
  • Lorains FK, Cowlishaw S, Thomas SA. Prevalence of comorbid disorders in problem and pathological gambling: systematic review and meta-analysis of population surveys. Addiction. 2011;106(3):490–498. doi:10.1111/j.1360-0443.2010.03300.x21210880
  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA: APA; 2013.
  • Goulet-Kennedy J, Labbe S, Fecteau S. The involvement of the striatum in decision making. Dialogues Clin Neurosci. 2016;18(1):55–63.27069380
  • Banz BC, Yip SW, Yau YH, Potenza MN. Behavioral addictions in addiction medicine: from mechanisms to practical considerations. Prog Brain Res. 2016;223:311–328. doi:10.1016/bs.pbr.2015.08.00326806783
  • Levy DJ, Glimcher PW. The root of all value: a neural common currency for choice. Curr Opin Neurobiol. 2012;22(6):1027–1038. doi:10.1016/j.conb.2012.06.00122766486
  • Meng YJ, Deng W, Wang HY, et al. Reward pathway dysfunction in gambling disorder: a meta-analysis of functional magnetic resonance imaging studies. Behav Brain Res. 2014;275:243–251. doi:10.1016/j.bbr.2014.08.05725205368
  • Potenza MN. Neurobiology of gambling behaviors. Curr Opin Neurobiol. 2013;23(4):660–667. doi:10.1016/j.conb.2013.03.00423541597
  • van Den Bos R, Davies W, Dellu-Hagedorn F, et al. Cross-species approaches to pathological gambling: a review targeting sex differences, adolescent vulnerability and ecological validity of research tools. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2454–2471. doi:10.1016/j.neubiorev.2013.07.00523867802
  • Anselme P. Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behav Brain Res. 2013;256:1–4. doi:10.1016/j.bbr.2013.07.03923896052
  • Cocker PJ, Winstanley CA. Irrational beliefs, biases and gambling: exploring the role of animal models in elucidating vulnerabilities for the development of pathological gambling. Behav Brain Res. 2015;279:259–273. doi:10.1016/j.bbr.2014.10.04325446745
  • Silveira MM, Malcolm E, Shoaib M, Winstanley CA. Scopolamine and amphetamine produce similar decision-making deficits on a rat gambling task via independent pathways. Behav Brain Res. 2015;281:86–95. doi:10.1016/j.bbr.2014.12.02925529186
  • Yates JR, Batten SR, Bardo MT, Beckmann JS. Role of ionotropic glutamate receptors in delay and probability discounting in the rat. Psychopharmacology. 2015;232(7):1187–1196. doi:10.1007/s00213-014-3747-325270726
  • Gueye AB, Trigo JM, Vemuri KV, Makriyannis A, Le Foll B. Effects of various cannabinoid ligands on choice behaviour in a rat model of gambling. Behav Pharmacol. 2016;27(2–3Spec Issue):258–269. doi:10.1097/FBP.000000000000022226905189
  • Le Foll B, Goldberg SR. Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther. 2005;312(3):875–883. doi:10.1124/jpet.104.07797415525797
  • Gamaleddin I, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking. PLoS One. 2012;7(1):e29900. doi:10.1371/journal.pone.002990022291896
  • Navarrete F, Rodriguez-Arias M, Martin-Garcia E, et al. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacol. 2013;38(12):2515–2524. doi:10.1038/npp.2013.157
  • Melis M, Pistis M. Endocannabinoid signaling in midbrain dopamine neurons: more than physiology? Curr Neuropharmacol. 2007;5(4):268–277. doi:10.2174/15701590778279361219305743
  • Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29(4):225–232. doi:10.1016/j.tins.2006.01.00816483675
  • Maldonado R, Berrendero F, Ozaita A, Robledo P. Neurochemical basis of cannabis addiction. Neuroscience. 2011;181:1–17. doi:10.1016/j.neuroscience.2011.02.03521334423
  • Gong JP, Onaivi ES, Ishiguro H, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071(1):10–23. doi:10.1016/j.brainres.2005.11.03516472786
  • Zhang HY, Gao M, Liu QR, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A. 2014;111(46):E5007–E5015. doi:10.1073/pnas.141321011125368177
  • Di Ciano P, Pushparaj A, Kim A, et al. The impact of selective dopamine D2, D3 and D4 ligands on the rat gambling task. PLoS One. 2015;10(9):e0136267. doi:10.1371/journal.pone.013626726352802
  • Cohen AI, Todd RD, Harmon S, O’Malley KL. Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci USA. 1992;89(24):12093–12097. doi:10.1073/pnas.89.24.120931334557
  • Valerio A, Belloni M, Gorno ML, Tinti C, Memo M, Spano P. Dopamine D2, D3, and D4 receptor mRNA levels in rat brain and pituitary during aging. Neurobiol Aging. 1994;15(6):713–719.7891826
  • O’Malley KL, Harmon S, Tang L, Todd RD. The rat dopamine D4 receptor: sequence, gene structure, and demonstration of expression in the cardiovascular system. New Biol. 1992;4(2):137–146.1554689
  • Meador-Woodruff JH, Grandy DK, Van Tol HH, et al. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacol. 1994;10(4):239–248. doi:10.1038/npp.1994.27
  • Meador-Woodruff JH, Haroutunian V, Powchik P, Davidson M, Davis KL, Watson SJ. Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex. Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch Gen Psychiatry. 1997;54(12):1089–1095.9400344
  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature. 1996;381(6579):245–248. doi:10.1038/381245a08622768
  • Khaled MA, Pushparaj A, Di Ciano P, Diaz J, Le Foll B. Dopamine D3 receptors in the basolateral amygdala and the lateral habenula modulate cue-induced reinstatement of nicotine seeking. Neuropsychopharmacol. 2014;39(13):3049–3058. doi:10.1038/npp.2014.158
  • Heidbreder C. Novel pharmacotherapeutic targets for the management of drug addiction. Eur J Pharmacol. 2005;526(1–3):101–112. doi:10.1016/j.ejphar.2005.09.03816253234
  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 1991;564(2):203–219.1839781
  • Diaz J, Pilon C, Le Foll B, et al. Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci. 2000;20(23):8677–8684.11102473
  • Nakajima S, Gerretsen P, Takeuchi H, et al. The potential role of dopamine D(3) receptor neurotransmission in cognition. Eur Neuropsychopharmacol. 2013;23(8):799–813. doi:10.1016/j.euroneuro.2013.05.00623791072
  • Le Foll B, Goldberg SR, Sokoloff P. The dopamine D3 receptor and drug dependence: effects on reward or beyond? Neuropharmacology. Sep. 2005;49(4):525–541.
  • Pes R, Godar SC, Fox AT, et al. Pramipexole enhances disadvantageous decision-making: lack of relation to changes in phasic dopamine release. Neuropharmacology. 2017;114:77–87. doi:10.1016/j.neuropharm.2016.11.01427889491
  • Fitoussi A, Le Moine C, De Deurwaerdere P, et al. Prefronto-subcortical imbalance characterizes poor decision-making: neurochemical and neural functional evidences in rats. Brain Struct Funct. 2015;220(6):3485–3496. doi:10.1007/s00429-014-0868-825134683
  • Tremblay M, Cocker PJ, Hosking JG, Zeeb FD, Rogers RD, Winstanley CA. Dissociable effects of basolateral amygdala lesions on decision making biases in rats when loss or gain is emphasized. Cogn Affect Behav Neurosci. 2014;14(4):1184–1195. doi:10.3758/s13415-014-0271-124668615
  • Zeeb FD, Winstanley CA. Functional disconnection of the orbitofrontal cortex and basolateral amygdala impairs acquisition of a rat gambling task and disrupts animals’ ability to alter decision-making behavior after reinforcer devaluation. J Neurosci. 2013;33(15):6434–6443. doi:10.1523/JNEUROSCI.3971-12.201323575841
  • Bhatti M, Jang H, Kralik JD, Jeong J. Rats exhibit reference-dependent choice behavior. Behav Brain Res. 2014;267:26–32. doi:10.1016/j.bbr.2014.03.01224657593
  • Cocker PJ, Hosking JG, Murch WS, Clark L, Winstanley CA. Activation of dopamine D4 receptors within the anterior cingulate cortex enhances the erroneous expectation of reward on a rat slot machine task. Neuropharmacology. 2016;105:186–195. doi:10.1016/j.neuropharm.2016.01.01926775821
  • Zeeb FD, Baarendse PJ, Vanderschuren LJ, Winstanley CA. Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task. Psychopharmacology. 2015;232(24):4481–4491. doi:10.1007/s00213-015-4075-y26387517
  • Pittaras E, Callebert J, Chennaoui M, Rabat A, Granon S. Individual behavioral and neurochemical markers of unadapted decision-making processes in healthy inbred mice. Brain Struct Funct. 2016;221(9):4615–4629. doi:10.1007/s00429-016-1192-226860089
  • Koot S, Baars A, Hesseling P, van Den Bos R, Joels M. Time-dependent effects of corticosterone on reward-based decision-making in a rodent model of the Iowa gambling task. Neuropharmacology. 2013;70:306–315. doi:10.1016/j.neuropharm.2013.02.00823474014
  • Mizoguchi H, Katahira K, Inutsuka A, et al. Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proc Natl Acad Sci U S A. 2015;112(29):E3930–E3939. doi:10.1073/pnas.141801411226150496
  • Ishii H, Ohara S, Tobler PN, Tsutsui K, Iijima T. Inactivating anterior insular cortex reduces risk taking. J Neurosci. 2012;32(45):16031–16039. doi:10.1523/JNEUROSCI.2278-12.201223136439
  • Ishii H, Ohara S, Tobler PN, Tsutsui K, Iijima T. Dopaminergic and serotonergic modulation of anterior insular and orbitofrontal cortex function in risky decision making. Neurosci Res. 2015;92:53–61. doi:10.1016/j.neures.2014.11.00925481848
  • Pushparaj A, Kim AS, Musiol M, et al. Differential involvement of the agranular vs granular insular cortex in the acquisition and performance of choice behavior in a rodent gambling task. Neuropsychopharmacol. 2015;40(12):2832–2842. doi:10.1038/npp.2015.133
  • Peak JN, Turner KM, Burne TH. The effect of developmental vitamin D deficiency in male and female Sprague-Dawley rats on decision-making using a rodent gambling task. Physiol Behav. 2015;138:319–324. doi:10.1016/j.physbeh.2014.09.00725447469
  • Roitman JD, Loriaux AL. Nucleus accumbens responses differentiate execution and restraint in reward-directed behavior. J Neurophysiol. 2014;111(2):350–360. doi:10.1152/jn.00350.201324174652
  • Lobo DS, Aleksandrova L, Knight J, et al. Addiction-related genes in gambling disorders: new insights from parallel human and pre-clinical models. Mol Psychiatry. 2015;20(8):1002–1010. doi:10.1038/mp.2014.11325266122
  • Boileau I, Payer D, Chugani B, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction. 2013;108(5):953–963. doi:10.1111/add.1206623167711
  • Paine TA, Asinof SK, Diehl GW, Frackman A, Leffler J. Medial prefrontal cortex lesions impair decision-making on a rodent gambling task: reversal by D1 receptor antagonist administration. Behav Brain Res. 2013;243:247–254. doi:10.1016/j.bbr.2013.01.01823354057
  • Paine TA, O’Hara A, Plaut B, Lowes DC. Effects of disrupting medial prefrontal cortex GABA transmission on decision-making in a rodent gambling task. Psychopharmacology. 2015;232(10):1755–1765. doi:10.1007/s00213-014-3816-725420610
  • Baarendse PJ, Counotte DS, O’Donnell P, Vanderschuren LJ. Early social experience is critical for the development of cognitive control and dopamine modulation of prefrontal cortex function. Neuropsychopharmacol. 2013;38(8):1485–1494. doi:10.1038/npp.2013.47
  • Cocker PJ, Dinelle K, Kornelson R, Sossi V, Winstanley CA. Irrational choice under uncertainty correlates with lower striatal D(2/3) receptor binding in rats. J Neurosci. 2012;32(44):15450–15457. doi:10.1523/JNEUROSCI.0626-12.201223115182
  • Gadziola MA, Wesson DW. The neural representation of goal-directed actions and outcomes in the Ventral Striatum’s olfactory tubercle. J Neurosci. 2016;36(2):548–560. doi:10.1523/JNEUROSCI.3328-15.2016
  • Phillips D, Choleris E, Ervin KS, et al. Cage-induced stereotypic behaviour in laboratory mice covaries with nucleus accumbens FosB/DeltaFosB expression. J Neurosci. 2016;301:238–242.
  • Aleksandrova LR, Creed MC, Fletcher PJ, Lobo DS, Hamani C, Nobrega JN. Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task. Behav Brain Res. 2013;245:76–82. doi:10.1016/j.bbr.2013.02.01123434606