237
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Effect of pre- and post-treatment with Bacopa monnieri (Brahmi) on phencyclidine-induced disruptions in object recognition memory and cerebral calbindin, parvalbumin, and calretinin immunoreactivity in rats

, &
Pages 1103-1117 | Published online: 01 May 2019

References

  • Braff DL, Heaton R, Kuck J, et al. The generalized pattern of neuropsychological deficits in outpatients with chronic schizophrenia with heterogeneous Wisconsin Card Sorting Test results. Arch Gen Psychiatry. 1991;48(10):891–898. doi:10.1001/archpsyc.1991.018103400230031929758
  • Steinpreis RE. The behavioral and neurochemical effects of phencyclidine in humans and animals: some implications for modeling psychosis. Behav Brain Res. 1996;74:45–55. doi:10.1016/0166-4328(95)00162-X8851914
  • Bobes J, Garcia-Portilla MP, Bascaran MT, Saiz PA, Bousoño M. Quality of life in schizophrenic patients. Dialogues Clin Neurosci. 2007;9(2):215–226.17726919
  • Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382:951–962. doi:10.1016/S0140-6736(13)60733-323810019
  • Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12(3):426–445. doi:10.1037/0894-4105.12.3.4269673998
  • Abdul-Monim Z, Reynolds GP, Neill JC. The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res. 2006;169(2):263–273. doi:10.1016/j.bbr.2006.01.00616500717
  • Grayson B, Idris NF, Neill JC. Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res. 2007;184(1):31–38. doi:10.1016/j.bbr.2007.06.01217675172
  • McLean SL, Beck JP, Woolley ML, Neill JC. A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats. Behav Brain Res. 2008;189(1):152–158. doi:10.1016/j.bbr.2007.12.02918282619
  • McKibben CE, Jenkins TA, Adams HN, Harte MK, Reynolds GP. Effect of pretreatment with risperidone on phencyclidine-induced disruptions in object recognition memory and prefrontal cortex parvalbumin immunoreactivity in the rat. Behav Brain Res. 2010;208(1):132–136. doi:10.1016/j.bbr.2009.11.01819914297
  • Walters Y, Agius M. Do atypical antipsychotics improve cognition? Psychiatr Danub. 2014;26(Suppl 1):285–288.
  • Shinomol GK, M.S. Bharath M. Exploring the role of “Brahmi” (Bacopa monnieri and Centella asiatica) in brain function and therapy. Recent Pat Endocr Metab Immune Drug Discov. 2011;5:33–49. doi:10.2174/18722141179435183322074576
  • Rastogi M, Ojha RP, Prabu PC, Devi BP, Agrawal A, Dubey GP. Prevention of age-associated neurodegeneration and promotion of healthy brain ageing in female Wistar rats by long term use of bacosides. Biogerontology. 2012;13:183–195. doi:10.1007/s10522-011-9367-y22143822
  • Holcomb LA, Dhanasekaran M, Hitt AR, Young KA, Riggs M, Manyam BV. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J Alzheimers Dis. 2006;9(3):243–251. doi:10.3233/JAD-2006-9303
  • Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res. 2007;21:965–969. doi:10.1002/(ISSN)1099-157317604373
  • Sarkar S, Mishra BR, Praharaj SK, Nizamie SH. Add-on effect of Brahmi in the management of schizophrenia. J Ayurveda Integr Med. 2012;3(4):223–225. doi:10.4103/0975-9476.10444823326095
  • Piyabhan P, Wetchateng T. Cognitive enhancement effects of Bacopa monnieri (Brahmi) on novel object recognition and VGLUT1 density in the prefrontal cortex, striatum, and hippocampus of sub-chronic phencyclidine rat model of schizophrenia. J Med Assoc Thai. 2013;96(5):625–632.23745319
  • Piyabhan P, Wetchateng T. Bacopa monnieri (Brahmi) enhanced cognitive function and prevented cognitive impairment by increasing VGLUT2 immunodensity in prefrontal cortex of sub-chronic phencyclidine rat model of schizophrenia. J Med Assoc Thai. 2015;98(Suppl 3):S7–15.26387382
  • Piyabhan P, Wannasiri S, Naowaboot J. Bacopa monnieri (Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia. Clin Exp Pharmacol Physiol. 2016;43(12):1234–1242. doi:10.1111/cep.2016.43.issue-1227562725
  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980;20:379–382. doi:10.1016/0304-3940(80)90178-06108541
  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991;48:996–1001. doi:10.1001/archpsyc.1991.018103500360051747023
  • Akbarian S, Kim JJ, Potkin SG, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–266. doi:10.1001/archpsyc.1995.039501600080027702443
  • Toru M, Watanabe S, Shibuya H, et al. Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand. 1988;78(2):121–137. doi:10.1111/j.1600-0447.1988.tb06312.x2906213
  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000;57:237–245. doi:10.1001/archpsyc.57.3.23710711910
  • Reynolds GP, Czudek C, Andrews HB. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry. 1990;27(9):1038–1044. doi:10.1016/0006-3223(90)90039-52159350
  • Simpson MD, Slater P, Deakin JF, Royston MC, Skan WJ. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett. 1989;107(1–3):211–215. doi:10.1016/0304-3940(89)90819-72616032
  • Sawaguchi T, Matsumura M, Kubota K. Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese Macaque Monkeys. Exp Brain Res. 1989;75:457–469. doi:10.1007/BF002498972744104
  • Volk DW, Lewis DA. GABA targets for the treatment of cognitive dysfunction in schizophrenia. Curr Neuropharmacol. 2005;3(1):45–62. doi:10.2174/157015905277339622545031
  • Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology. 2000;23:223–239. doi:10.1016/S0893-133X(00)00137-810942847
  • Nicholi AM Jr. Phencyclidine hydrochloride (PCP) use among college students: subjective and clinical effects, toxicity, diagnosis, and treatment. J Am Coll Health. 1984;32:197–200. doi:10.1080/07448481.1984.103928066736429
  • Smith DE. A clinical approach to the treatment of phencyclidine (PCP) abuse. Psychopharmacol Bull. 1980;16:67–70.
  • Liden CB, Lovejoy FH Jr, Costello CE. Phencyclidine. Nine cases of poisoning. JAMA. 1975;234:513–516. doi:10.1001/jama.1975.032601800530241242171
  • Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998;281:1349–1352. doi:10.1126/science.281.5381.13499721099
  • Hanania T, Hillman GR, Johnson KM. Augmentation of locomotor activity by chronic phencyclidine is associated with an increase in striatal NMDA receptor function and an upregulation of the NR1 receptor subunit. Synapse. 1999;31:229–239. doi:10.1002/(ISSN)1098-239610029241
  • Neill JC, Barnes S, Cook S, et al. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther. 2010;128(3):419–432.20705091
  • Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. San Diego: Academic Press; 1998.
  • Hashimoto K, Fujita Y, Iyo M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors. Neuropsychopharmacology. 2007;32:514–521. doi:10.1038/sj.npp.130104716495935
  • Hashimoto K, Fujita Y, Shimizu M, Iyo M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol. 2005;219:114–117. doi:10.1016/j.ejphar.2005.07.002
  • Hashimoto K, Ishima T, Fujita Y, et al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the novel selective alpha7 nicotinic receptor agonist SSR180711. Biol Psychiatry. 2008;63:92–97. doi:10.1016/j.biopsych.2007.04.03417601496
  • Reynolds GP, Zhang ZJ, Beasley CL. Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res Bull. 2001;55(5):579–584. doi:10.1016/S0361-9230(01)00526-311576754
  • Beasley CL, Reynolds GP. Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res. 1997;24(3):349–355. doi:10.1016/S0920-9964(96)00122-39134596
  • Beasley CL, Zhang ZJ, Patten I, Reynolds GP. Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry. 2002;52(7):708–715.12372661
  • Veerasakul S, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Effect of methamphetamine exposure on expression of calcium binding proteins in rat frontal cortex and hippocampus. Neurotox Res. 2016;30(3):427–433. doi:10.1007/s12640-016-9628-227179799
  • Zhang Z, Sun J, Reynolds GP. A selective reduction in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia patients. Chin Med J (Engl). 2002;115(6):819–823.12123544
  • Harte MK, Powell SB, Swerdlow NR, Geyer MA, Reynolds GP. Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. J Neural Transm. 2007;114(7):893–898. doi:10.1007/s00702-007-0627-617594127
  • Reynolds GP, Abdul-Monim Z, Neill JC, Zhang ZJ. Calcium binding protein markers of GABA deficits in schizophrenia–postmortem studies and animal models. Neurotox Res. 2004;6(1):57–61. doi:10.1007/BF0303329715184106
  • Katz RJ, Liebler L. GABA involvement in memory consolidation: evidence from posttrial amino-oxyacetic acid. Psychopharmacology. 1978;56:191–193. doi:10.1007/BF00431848417370
  • Michels L, Martin E, Klaver P, et al. Frontal GABA levels change during working memory. PLoS One. 2012;7:1–8. doi:10.1371/journal.pone.0031933
  • Fuster JM. The prefrontal cortex—an update: time is of the essence. Neuron. 2001;30:319–333. doi:10.1016/S0896-6273(01)00285-911394996
  • Davis HP, Squire LR. Protein synthesis and memory: a review. Psychol Bull. 1984;96:518–559. doi:10.1037/0033-2909.96.3.5186096908
  • Rossato JI, Bevilaqua LRM, Myskiw JC, Medina JH, Izquierdo I, Cammarota M. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem. 2007;14:36–46. doi:10.1101/lm.42260717272651
  • Balderas I, Chavez-Hurtado J, Rodriguez-Ortiz CJ, McGaugh JL, Salgado-Tonda P, Bermudez-Rattoni F. The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn Mem. 2008;15:618–624. doi:10.1101/lm.102800818723431
  • Tujioka K, Okuyama S, Yokogoshi H, et al. Dietary g-aminobutyric acid affects the brain protein synthesis rate in young rats. Amino Acids. 2007;32:255–560. doi:10.1007/s00726-006-0358-216755368
  • Gibney J, Wallace JD, Spinks T, et al. The effects of 10 years of recombinant human growth hormone (GH) in adult GH-deficient patients. J Clin Endocrinol Metab. 1999;84:2596–2602. doi:10.1210/jcem.84.8.591610443645
  • Deijen JB, de Boer H, van der Veen EA. Cognitive changes during growth hormone replacement in adult men. Psychoneuroendocrinology. 1998;23:45–55. doi:10.1016/S0306-4530(97)00092-99618751
  • Thanapreedawat P, Kobayashi H, Inui N, et al. GABA affects novel object recognition memory and working memory in rats. J Nutr Sci Vitaminol. 2013;59(2):152–157.23727647
  • Singh HK, Dhawan BN. Drugs affecting learning and memory. In: Tandon PN, Bijiani V, Wadhwa S, editors. Lectures in neurobiology, vol. 1. New Delhi: Wiley Eastern; 1992:189–207.
  • Mathew J, Soman S, Sadanandan J, Paulose CS. Decreased GABA receptor in the striatum and spatial recognition memory deficit in epileptic rats: effect of Bacopa monnieri and bacoside-A. J Ethnopharmacol. 2010;130(2):255–261. doi:10.1016/j.jep.2010.04.02520451596
  • Singh HK, Dhawan BN. Neuropsycho-pharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Ind J Pharmcol. 1997;29:S359–365.
  • Singh HK, Rastogi RP, Srimal RC, Dhawan BN. Effect of bacoside A and B on the avoidance responses in rats. Phytother Res. 1988;2:70–75. doi:10.1002/ptr.2650020205
  • Reas SK, Amee K, Paulose CS. Glutamate receptor gene expression and binding studies in pilocarpine induced epileptic rat: neuroprotective role of Bacopa monnieri extract. Epilep Behav. 2008;12:54–60. doi:10.1016/j.yebeh.2007.09.021
  • Russo A, Izzo AA, Borrelli F, Renis M, Vanella A. Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytother Res. 2003;17:46–54. doi:10.1002/ptr.1061
  • Mathew J, Balakrishnan S, Antony S, Abraham PM, Paulose CS. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A. J Biomed Sci. 2012;24:19–25.
  • Mathew J, Gangadharan G, Kuruvilla KP, Paulose CS. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri. Monnieri Neurochem Res. 2011;36(1):7–16. doi:10.1007/s11064-010-0253-920821261
  • Mathew J, Peeyush Kumar T, Khan RS, Paulose CS. Behavioral deficit and decreased GABA receptor functional regulation in the cerebellum of epileptic rats: effect of Bacopa monnieri and bacoside A. Epilepsy Behav. 2010;17(4):441–447. doi:10.1016/j.yebeh.2009.12.01420153260
  • Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–2927. doi:10.1523/JNEUROSCI.17-08-02921.19979092613
  • Yonezawa Y, Kuroki T, Kawahara T, Tashiro N, Uchimura H. Involvement of gamma-aminobutyric acid neurotransmission in phencyclidine-induced dopamine release in the medial prefrontal cortex. Eur J Pharmacol. 1998;341(1):45–56. doi:10.1016/S0014-2999(97)01435-09489855
  • Abdul-Monim Z, Neill JC, Reynolds GP. Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat. J Psychopharmacol. 2007;21:198–205. doi:10.1177/026988110706709717329300
  • Peth-Nui T, Wattanathorn J, Muchimapura S, et al. Effects of 12 week bacopa monnieri consumption on attention, cognitive processing, working memory, and functions of both cholinergic and monoaminergic systems in healthy elderly volunteers. Evid Based Complement Alternat Med. 2012;2012:606424. doi:10.1155/2012/60642423320031
  • Prabhakar S, Saraf MK, Pandhi P, Anand A. Bacopa monniera exerts antiamnesic effect on diazepam-induced anterograde amnesia in mice. Psychopharmacology (Berl). 2008;200(1):27–37. doi:10.1007/s00213-007-1049-818193203
  • Stough C, Lloyd J, Clarke J, et al. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl). 2001;156:481–484. doi:10.1007/s00213010081511498727
  • Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J. Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology. 2002;27:279–281. doi:10.1016/S0893-133X(02)00301-912093601