182
Views
27
CrossRef citations to date
0
Altmetric
Review

Vascular cognitive impairment: pathophysiological mechanisms, insights into structural basis, and perspectives in specific treatments

, , , , , , & show all
Pages 1381-1402 | Published online: 21 May 2019

References

  • Moran AE. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;14(372):1333–1341. doi:10.1056/NEJMoa1406656
  • Rockwood K, Wentzel C, Hachinski V, Hogan DB, MacKnight C, McDowell I. Prevalence and outcomes of vascular cognitive impairment. Vascular Cognitive Impairment Investigators of the Canadian Study of Health and Aging. Neurology. 2000;54:447–451. doi:10.1212/WNL.54.2.44710668712
  • Brodaty H, Altendorf A, Withall A, Sachdev PS. Mortality and institutionalization in early survivors of stroke: the effects of cognition, vascular mild cognitive impairment, and vascular dementia. J Stroke Cerebrovasc Dis. 2010;19(6):485–493. doi:10.1016/j.jstrokecerebrovasdis.2009.09.00620538487
  • Gorelick PB, Scuteri A, Black SE; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the Аmerican heart association Аmerican stroke association. Stroke. 2011;42:2672–2713. doi:10.1161/STR.0b013e3182299496
  • Erkinjuntti T. Diagnosis and management of vascular cognitive impairment and dementia. J Neural Transm Suppl. 2002;63:91–109.
  • DeCarli C. The role of cerebrovascular disease in dementia. Neurologist. 2003;9(3):123–136. doi:10.1097/00127893-200305000-0000112808409
  • Gao Q, Fan Y, Mu LY, Ma L, Song ZQ, Zhang YN. S100B and ADMA in cerebral small vessel disease and cognitive dysfunction. J Neurol Sci. 2015;354(1–2):27–32. doi:10.1016/j.jns.2015.04.03125990800
  • Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta–analysis. BMJ. 2010;341(14):36–66. doi:10.1136/bmj.c3666
  • Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6:611–619. doi:10.1016/S1474-4422(07)70170-917582361
  • Gorelick PB, Scuteri A, Black SE, et al; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association. Am Stroke Assoc Stroke. 2011;42:2672–2713. doi: 10.1161/STR.0b013e3182299496.
  • Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701. doi:10.1016/S1474-4422(10)70104-620610345
  • Yael D, van Veluw SJ, Steven MG. Ischemic brain injury in cerebral amyloid angiopathy. J Cereb Blood Flow Metab. 2016;36(1):40–54. doi:10.1038/jcbfm.2015.8825944592
  • Touyz RM, Montezano AC. Hypertensive vasculopathy. PanVascular Med. 1–28. doi: 10.1007/978-3-642-37393-051-1.
  • Englund E. Neuropathology of white matter lesions in vascular cognitive impairment. Cerebrovasc Dis. 2002;13(2):11–15. doi:10.1159/00004914411901237
  • Sergi M-R, Steven M,G, Anand V. Cerebral microbleeds: overview and implications in cognitive impairment. Alzheimers Res Ther. 2014;6:33. doi:10.1186/alzrt26324987468
  • Wardlaw JM. Blood-brain barrier and cerebral small vessel disease. J Neurol Sci. 2010;299:66–71. doi:10.1016/j.jns.2010.08.04220850797
  • Zhou M, Mao L, Wang Y, et al. Morphologic changes of cerebral veins in hypertensive rats: venous collagenosis is associated with hypertension. J Stroke Cerebrovasc Dis. 2015;24(3):530–536. doi:10.1016/j.jstrokecerebrovasdis.2015.05.01125534370
  • Craggs LJ, Hagel C, Kuhlenbaeumer G, et al. Quantitative vascular pathology and phenotyping familial and sporadic cerebral small vessel diseases. Brain Pathol. 2013;23:547–557. doi:10.1111/bpa.1204123387519
  • Brown WR, Moody DM, Challa VR, Thore CR, Anstrom JA. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci. 2002;15(203–204):159–163. doi:10.1016/S0022-510X(02)00283-6
  • Finelli PF, Kessimian N, Bernstein PW. Cerebral amyloid angiopathy manifesting as recurrent intracerebral hemorrhage. Arch Neurol. 1984;41(3):330–333. doi:10.1001/archneur.1984.040501501120276696653
  • Tanskanen M, Mäkelä M, Myllykangas L, et al. Prevalence and severity of cerebral amyloid angiopathy: a population-based study on very elderly Finns (Vantaa 85+). Neuropathol Appl Neurobiol. 2012;38(4):329–336. doi:10.1111/j.1365-2990.2011.01219.x21916927
  • Suter OC, Sunthorn T, Kraftsik R. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke. 2002;33:1986–1992.12154250
  • Okamoto Y, Ihara M, Fujita Y. Cortical microinfarcts in Alzheimer’s disease and subcortical vascular dementia. Neuroreport. 2009;20:990–996. doi:10.1097/WNR.0b013e32832d2e6a19483658
  • Thal DR, Capetillo Zarate E, Larionov S. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances. Neurobiol Aging. 2009;30:1936–1948. doi:10.1016/j.neurobiolaging.2008.01.01718359131
  • Thanprasertsuk S, Martinez-Ramirez S, Pontes-Neto OM, et al. Posterior white matter disease distribution as a predictor of amyloid angiopathy. Neurology. 2014;83(9):794–800. doi:10.1212/WNL.000000000000073225063759
  • Charidimou A, Jäger RH, Fox Z, et al. Prevalence and mechanisms of cortical superficial siderosis in cerebral amyloid angiopathy. Neurology. 2013;81(7):626−632. doi:10.1212/WNL.0b013e3182a08f2c23864315
  • Masahito Y. Cerebral amyloid angiopathy: emerging concepts. J Stroke. 2015;17(1):17–30. doi:10.5853/jos.2015.17.1.1725692104
  • Wollenweber FA, Buerger K, Mueller C, et al. Prevalence of cortical superficial siderosis in patients with cognitive impairment. J Neurol. 2014;261(2):277−282. doi:10.1007/s00415-013-7161-224221645
  • Zonneveld HI, Goos JD, Wattjes MP, et al. Prevalence of cortical superficial siderosis in a memory clinic population. Neurology. 2014;82(8):698−704. doi:10.1212/WNL.000000000000051324477113
  • Yakushiji Y. Cerebral microbleeds: detection, associations and clinical implications. Front Neurol Neurosci. 2015;37:78−92. doi:10.1159/00043711526587900
  • Brundel M, Heringa SM, de Bresser J, et al. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease. J Alzheimers Dis. 2012;31(2):259−263. doi:10.3233/JAD-2012-12036422531417
  • Akoudad S, Wolters FJ, Viswanathan A, de Bruijn RF. Cerebral microbleeds are associated with cognitive decline and dementia: the Rotterdam Study. JAMA Neurol. 2016;73(8):934–943. doi:10.1001/jamaneurol.2016.101727271785
  • Werring DJ, Frazer DW, Coward LJ, et al. Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain. 2004;127:2265−2275. doi:10.1093/brain/awh25315282216
  • Werring DJ, Gregoire SM, Cipolotti L. Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci. 2010;299(1−2):131−135. doi:10.1016/j.jns.2010.08.03420850134
  • Steven M, Greenberg MD, Edip G, Jonathan R, Eric E. Amyloid angiopathy–related vascular cognitive impairment. Stroke. 2004;35:2616−2619.15459438
  • Case NF, Charlton A, Zwiers A. Cerebral amyloid angiopathy is associated with executive dysfunction and mild cognitive impairment. Stroke. 2016;47(8):2010−2016. doi:10.1161/STROKEAHA.116.01299927338926
  • Xiong L, Davidsdottir S, Reijmer YD. Cognitive profile and its association with neuroimaging markers of non-demented cerebral amyloid angiopathy patients in a stroke unit. J Alzheimers Dis. 2016;52(1):171−178. doi:10.3233/JAD-15089027060947
  • Banerjee G, Wilson D, Ambler G. Cognitive impairment before intracerebral hemorrhage is associated with cerebral amyloid angiopathy. Stroke. 2018;49(1):40−45. doi:10.1161/STROKEAHA.117.01940929247143
  • Beeri MS, Ravona-Springer R, Silverman JM, Haroutunian V. The effects of cardio-vascular risk factors on cognitive compromise. Dialogues Clin Neurosci. 2009;11:201–212.19585955
  • Alonso A, Jacobs DR Jr, Menotti A, et al. Cardiovascular risk factors and dementia mortality: 40 years of follow-up in the Seven Countries Study. J Neurol Sci. 2009;280:79–83. doi:10.1016/j.jns.2009.02.00419251275
  • Iadecola C, Yaffe K, Biller J, et al., American Heart Association Council on Hypertension; Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Stroke Council. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension. 2016;68(6):e67–e94. doi:10.1161/HYP.0000000000000053.27977393
  • Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT. The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol. 2015;263:235–243. doi:10.1016/j.expneurol.2014.10.01725447937
  • Víteček J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm. 2012;22. doi: 10.1155/2012/318087.
  • Boger RH, Zoccali C. Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann Med. 2006;38:126–136. doi:10.1080/0785389050047215116581698
  • Chang CC, Wu CH, Liu LK, et al. Association between serum uric acid and cardiovascular risk in nonhypertensive and nondiabetic individuals: the Taiwan I-Lan Longitudinal Aging Study. Sci Rep. 2018;8:5234. doi:10.1038/s41598-018-22997-029588485
  • Tana C, Ticinesi A, Prati B, Nouvenne A, Meschi T. Uric acid and cognitive function in older individuals. Nutrients. 2018;10(8):E975. doi:10.3390/nu1008097530060474
  • Verhaaren BF, Vernooij MW, Dehghan A, et al. The relation of uric acid to brain atrophy and cognition: the Rotterdam Scan Study. Neuroepidemiology. 2013;41(1):29−34. doi:10.1159/00034660623548762
  • Engel B, Gomm W, Broich K, Maier W, Weckbecker K, Haenisch B. Hyperuricemia and dementia - a case-control study. BMC Neurol. 2018;18(1):131. doi:10.1186/s12883-018-1136-y30170563
  • Schrag M, Mueller C, Zabel M, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis. 2013;59:100–110. doi:10.1016/j.nbd.2013.07.00523867235
  • Mullan K, Cardwell CR, McGuinness B, Woodside JV, McKay GJ. Plasma antioxidant status in patients with Alzheimer’s disease and cognitively intact elderly: a meta-analysis of case-control studies. J Alzheimers Dis. 2018;62:305–317. doi:10.3233/JAD-17075829439339
  • Bowman GL, Shannon J, Frei B, Kaye JA, Quinn JF. Uric acid as a CNS antioxidant. J Alzheimers Dis. 2010;19:1331–1336. doi:10.3233/JAD-2010-133020061611
  • McFarland NR, Burdett T, Desjardins CA, Frosch MP, Schwarzschild MA. Postmortem brain levels of urate and precursors in Parkinson’s disease and related disorders. Neurodegener Dis. 2013;12:189–198. doi:10.1159/00034637023467193
  • Desideri G, Gentile R, Antonosante A, et al. Uric acid amplifies a amyloid effects involved in the cognitive dysfunction/dementia: evidences from an experimental model in vitro. J Cell Physiol. 2017;232:1069–1078. doi:10.1002/jcp.2550927474828
  • Ye BS, Lee WW, Ham JH, Lee JJ, Lee PH, Sohn YH. Alzheimer’s disease neuroimaging iniziative. Does serum uric acid act as a modulator of cerebrospinal fluid alzheimer’s disease biomarker related cognitive decline? Eur J Neurol. 2016;23:948–957. doi:10.1111/ene.2016.23.issue-526917248
  • Tanaka A, Kawaguchi A, Tomiyama H, et al. Cross-sectional and longitudinal associations between serum uric acid and endothelial function in subjects with treated hypertension. Int J Cardiol. 2018. doi:10.1016/j.ijcard.2018.06.017
  • Puddu P, Puddu GM, Cravero E, Vizioli L, Muscari A. Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol. 2012;59:235–242. doi:10.1016/j.jjcc.2012.01.01322398104
  • Perez-Ruiz F, Becker MA. Inflammation: a possible mechanism for a causative role of hyperuricemia/gout in cardiovascular disease. Curr Med Res Opin. 2015;31(2):9–14. doi:10.1185/03007995.2015.108798026414731
  • Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study. Neurology. 2012;78:720–727. doi:10.1212/WNL.0b013e318248e50f22357713
  • Shao X, Lu W, Gao F, et al. Uric acid induces cognitive dysfunction through hippocampal inflammation in rodents and humans. J Neurosci. 2016;36:10990–11005. doi:10.1523/JNEUROSCI.2710-15.201627798180
  • Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia. 2008;12(4):198–204.19158963
  • Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19:739–744.4953930
  • Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996;21:14–17.8848832
  • Yu WH, Fraser PE. S100B interaction with tau is promoted by zinc and inhibited by hyperphosphorylation in Alzheimer’s disease. J Neurosci. 2001;21:2240–2246. doi:10.1523/JNEUROSCI.21-07-02240.200111264299
  • Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Curr Mol Med. 2013;13(1):24–57. doi:10.2174/15665241380448621422834835
  • Liu J, Wang H, Zhang L, et al. S100B transgenic mice develop features of Parkinson’s disease. Arch Med Res. 2011;42:1–7. doi:10.1016/j.arcmed.2011.01.00521376255
  • Adami C, Sorci G, Blasi E. S100B expression in and effects on microglia. Glia. 2001;33:131–142. doi:10.1002/1098-1136(200102)33:2<131::AID-GLIA1012>3.0.CO;2-D11180510
  • Hu J, Ferreira A, Van Eldik LJ. S100B induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem. 1997;69(6):2294–2301. doi:10.1046/j.1471-4159.1997.69062294.x9375660
  • Li Y, Barger SW, Liu L. S100В induction of the pro-inflammatory cytokine interleukin-6 in neurons. J Neurochem. 2000;74:143–150.
  • Griffin WS, Mrak RE. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol. 2002;72:233–238.12149413
  • Hu J, Van Eldik LJ. Glial derived proteins activate cultured astrocytes and enhance β–amyloid–induced astrocyte activation. Brain Res. 1999;842(1):46–54. doi:10.1016/S0006-8993(99)01804-110526094
  • Barger SW, Basile AS. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem. 2001;76:846–854. doi:10.1046/j.1471-4159.2001.00075.x11158256
  • Friend WC, Clapoff S, Landry C, et al. Cell–specific expression of high levels in human S100B in transgenic mouse brain is dependent of gene dosage. J Neurosci. 1992;12:4337–4346. doi:10.1523/JNEUROSCI.12-11-04337.19921432098
  • Wallin А, Kapaki E, Boban M, et al. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease – a consensus report. BMC Neurol. 2017;17:102. doi:10.1186/s12883-017-0877-328535786
  • Lamers KJB, Van Engelen BGM, Gabreels FJM, Hommes OR, Borm GF, Wevers RA. Cerebrospinal neuron–specific enolase, S–100 and Myelin basic protein in neurological disorders. Acta Neurol Scan. 1995;92:247–251. doi:10.1111/j.1600-0404.1995.tb01696.x
  • Persson L, Hardemark HG, Gustafsson J, et al. S100 protein and neuronspecific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke. 1987;18:911–918. doi:10.1161/01.STR.18.5.9113629651
  • Elting JW, De Jager AEJ, Teelken AW. Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci. 2000;181:104–110. doi:10.1016/S0022-510X(00)00442-111099719
  • Hardemark HG, Almquist O, Johansson T, Påhlman S, Persson L. S100 protein in cerebrospinal fluid after aneurysmal subarachnoid haemorrhage: relation to functional outcome, late CT and SPECT changes, and signs of higher cortical dysfunction. Acta Neurochir. 1989;99:135–144. doi:10.1007/BF014023222788973
  • Abraha HD, Butterworth J, Bath PMW, Wassif WS, Garthwaite J, Sherwood RA. Serum S100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem. 1997;34:546–550. doi:10.1177/0004563297034004059293311
  • Barger SW, Van Eldik LJ, Mattson MP. S100B protects hippocampal neurons from damage induced by glucose deprivation. Brain Res. 1995;77:167–170. doi:10.1016/0006-8993(95)00160-R
  • Mrak RE, Sheng JG, Griffin WS. Correlation of astrocytic S100B expression with dystrophic neurites in amyloid plaques of Alzheimer’s disease. J Neuropathol Exp Neurol. 1996;55:273–279. doi:10.1097/00005072-199603000-000028786385
  • Li Y, Wang J, Sheng JG, et al. S100B increases levels of b–amyloid precursor protein and its encoding mRNA in rat neuronal cultures. J Neurochem. 1998;71:1421–1428. doi:10.1046/j.1471-4159.1998.71041421.x9751173
  • Sheng JG, Mrak RE, Griffin WST. Glial–neuronal interactions in Alzheimer disease: progressive association of IL–1α+microglia and S100B+ astrocytes with neurofibrillary tangle stage. J Neuropath Exp Neurol. 1997;56:285–290. doi:10.1097/00005072-199703000-000079056542
  • Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201. doi:10.1016/j.neuron.2008.01.00318215617
  • Ruitenberg A, Den Heijer T, Bakker SL, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol. 2005;57:789–794. doi:10.1002/ana.2049315929050
  • Hermann DM, ElAli A. The abluminal endothelial membrane in neurovascular remodeling in health and disease. Sci Signal. 2012;5(236):re4. doi:10.1126/scisignal.200288622871611
  • Grotta JC, Moskowitz MA, Jacobs TP, et al. Report of the stroke progress review group. National institute of neurological disorders and stroke; 2002 Availible from: https://www.stroke.nih.gov/documents/SPRG_report_042002.pdf. Accessed 1121, 2018.
  • Maki T, Hayakawa K, Pham LD, Xing C, Lo EH, Arai K. Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol Disord Drug Targets. 2013;12(3):302–315. doi:10.2174/187152731131203000423469847
  • ElAli A, Thériault P, Rivest S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci. 2014;15(4):6453–6474. doi:10.3390/ijms1504645324743889
  • Arai K, Lok J, Guo S, Hayakawa K, Xing C, Lo EH. Cellular mechanisms of neurovascular damage and repair after stroke. J Child Neurol. 2011;26:1193–1198. doi:10.1177/088307381140861021628695
  • Lam FC, Liu R, Lu P, et al. Beta–Amyloid efflux mediated by p–glycoprotein. J Neurochem. 2001;76:1121–1128. doi:10.1046/j.1471-4159.2001.00113.x11181832
  • Pham LD, Hayakawa K, Seo JH, et al. Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia. 2012;60:875–881. doi:10.1002/glia.2232022392631
  • Franklin RJ, Ffrench–Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9:839–855. doi:10.1038/nrn248018931697
  • Armstead WM, Raghupathi R. Endothelin and the neurovascular unit in pediatric traumatic brain injury. Neurol Res. 2011;33(2):127–132. doi:10.1179/016164111X12881719352138.4121801587
  • Wang YF, Huang SR, Shao SH, Qian L, Ping X. Studies on bioactivities of tea (Camellia sinensis L.) fruit peel extracts: antioxidant activity and inhibitory potential against α-glucosidase and α-amylase in vitro. Ind Crops Prod. 2012;37(1):520–526. doi:10.1016/j.indcrop.2011.07.031
  • Bastide P, Darido C, Pannequin J, et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol. 2007;178(4):635–648. doi:10.1083/jcb.20070415217698607
  • Fernández-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A. 2010;107(51):22290–22295. doi:10.1073/pnas.101132110821135230
  • Ruhrberg C, Bautch VL. Neurovascular development and links to disease. Cell Mol Life Sci. 2013;70(10):1675–1684. doi:10.1007/s00018-013-1277-523475065
  • Roger T, Koide C, Malcolm FG. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol. 2014;201:433–439. doi:10.1111/nph.1253826207269
  • Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–660. doi:10.1038/nm0603-65312778163
  • Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem. 2012;403(7):1841–1850. doi:10.1007/s00216-012-5929-322447217
  • Busch KE, Laurent P, Soltesz Z, et al. Tonic signaling from O₂ sensors sets neural circuit activity and behavioral state. Nat Neurosci. 2012;15(4):581–591. doi:10.1038/nn.306122388961
  • Sagare AP, Bell RD, Zhao Z, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nature Commun. 2013;4:2932. doi:10.1038/ncomms393224336108
  • Kisler K, Nelson AR, Rege SV. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 2017;20(3):406–416. doi:10.1038/nn.448928135240
  • Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115:1285–1295. doi:10.1161/CIRCULATIONAHA.106.65285917353456
  • Wiseman S, Marlborough F, Doubal F, Webb DJ, Wardlaw J. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non–lacunar stroke and non–stroke: systematic review and meta–analysis. Cerebrovasc Dis. 2014;37:64–75. doi:10.1159/00035678924401164
  • Meissner A. Hypertension and the brain: a risk factor for more than heart disease. Cerebrovasc Dis. 2016;42:255–262. doi:10.1159/00044608227173592
  • Behzadian MA, Wang XL, Shabrawey M, Cadwell RB. Effects of hypoxia on glial cell expression of angiogenesis–regulating factors VEGF and TGF–β. Glia. 1998;24:216–225. doi:10.1002/(SICI)1098-1136(199810)24:2<216::AID-GLIA6>3.0.CO;2-19728767
  • Tarkowski E, Issa R, Sjogren M, et al. Increased intrathecal levels of the angiogenic factors VEGF and TGF–beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging. 2002;23(2):237–243. doi:10.1016/S0197-4580(01)00285-811804709
  • Vischer UM. Von Willebrand factor, endothelial dysfunction, andcardiovascular disease. J Thromb Haemost. 2006;4(6):1186–1193. doi:10.1111/j.1538-7836.2006.01949.x16706957
  • Folsom AR, Rosamond WD, Shahar E, et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The atherosclerosis risk in communities (ARIC) study investigators. Circulation. 1999;100:736–742. doi:10.1161/01.CIR.100.7.73610449696
  • Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY. Prognostic value of plasma von willebrand factor and soluble P‐selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation. 2003;107:3141–3145. doi:10.1161/01.CIR.0000077912.12202.FC12796127
  • Quinn TJ, Gallacher J, Deary IJ, Lowe GDO, Fenton C, Stott DJ. Association between circulating hemostatic measures and dementia or cognitive impairment: systematic review and meta–analyzes. J Thromb Haemost. 2011;9:1475–1482. doi:10.1111/j.1538-7836.2011.04403.x21676170
  • Voskuil M, van Royen N, Hoefer IE, et al. Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP–1. Am J Physiol Heart Circ Physiol. 2003;284(4):H1422–Н1428. doi:10.1152/ajpheart.00506.2002
  • Niu J, Wang K, Zhelyabovska O, Saad Y, Kolattukudy PE. MCP–1 induced protein promotes endothelial–like and angiogenic properties in human bone marrow monocytic cells. J Pharmacol Exp Ther. 2013;347(2):288–297. doi:10.1124/jpet.113.20731624008336
  • Bruno V, Copani A, Besong G, Scoto G, Nicoletti F. Neuroprotective activity of chemokines against n–methyl–d–aspartate or beta–amyloid–induced toxicity in culture. Eur J Pharmacol. 2000;399:117–121. doi:10.1016/S0014-2999(00)00367-810884510
  • Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke. 2007;38:1345–1353. doi:10.1161/01.STR.0000259709.16654.8f17332467
  • Losy J, Zaremba J. Monocyte chemoattractant protein–1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke. 2001;32:2695–2696. doi:10.1161/hs1101.09738011692036
  • Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000;102:2165–2168. doi:10.1161/01.CIR.102.18.216511056086
  • Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 2002;106:1439–1441. doi:10.1161/01.CIR.0000033116.22237.F912234944
  • Whiteley W, Jackson C, Lewis S, et al. Association of circulating inflammatory markers with recurrent vascular events after stroke: a prospective cohort study. Stroke. 2011;42:10–16. doi:10.1161/STROKEAHA.110.58895421127302
  • Winbeck K, Poppert H, Etgen T, Conrad B, Sander D. Prognostic relevance of early serial С–reactive protein measurements after first ischemic stroke. Stroke. 2002;33:2459–2464.
  • Van Sloten TT, Stehouwer CD. Carotid stiffness: a novel cerebrovascular disease risk factor. Pulse (Basel). 2016;4(1):24–27. doi:10.1159/00044535427493900
  • Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end–organ damage. J Appl Physiol. 2008;105:1652–1660. doi:10.1152/japplphysiol.90549.200818772322
  • O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–204. doi:10.1161/01.HYP.0000168052.00426.6515911742
  • Tzourio C, Laurent S, Debette S. Is hypertension associated with an accelerated aging of the brain? Hypertension. 2014;63:894–903. doi:10.1161/HYPERTENSIONAHA.113.0014724566080
  • Rothwell PM. Limitations of the usual blood–pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375:938–948. doi:10.1016/S0140-6736(10)60309-120226991
  • Schillaci G, Bilo G, Pucci G, et al. Relationship between short–term blood pressure variability and large–artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60:369–377. doi:10.1161/HYPERTENSIONAHA.112.19749122753222
  • Selwaness M, van Den Bouwhuijsen Q, Mattace–Raso FU, et al. Arterial stiffness is associated with carotid intraplaque hemorrhage in the general population: the Rotterdam study. Arterioscler Thromb Vasc Biol. 2014;34:927–932. doi:10.1161/ATVBAHA.113.30260324482373
  • Ungvari Z. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci. 2010;65(10):1028–1041. doi:10.1093/gerona/glq11320576649
  • Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans. Circ Res. 2007;100(11):1659–1666. doi:10.1161/01.RES.0000269183.13937.e817478731
  • Ungvari Z, Buffenstein R, Austad SN, Podlutsky A, Kaley G, Csiszar A. Oxidative stress in vascular senescence: lessons from successfully aging species. Front Biosci. 2008;13:5056–5070.18508570
  • Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–866. doi:10.1016/j.neuron.2013.10.00824267647
  • Sindler AL, Delp MD, Reyes R, Wu G, Muller–Delp JM. Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol. 2009;587(15):3885–3897. doi:10.1113/jphysiol.2009.17222119528246
  • Berkowitz DE, White R, Li D, et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. 2003;108(16):2000–2006. doi:10.1161/01.CIR.0000092948.04444.C714517171
  • Matsushita H, Chang E, Glassford AJ, Cooke JP, Chiu CP, Tsao PS. eNOS activity is reduced in senescent human endothelial cells. Circ Res. 2001;89(9):793–798.11679409
  • Franceschi C, Bonafè M, Valensin S, et al. Inflamm–aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–254.10911963
  • Miles EA, Rees D, Banerjee T, et al. Age–related increases in circulating inflammatory markers in men are independent of BMI, blood pressure and blood lipid concentrations. Atherosclerosis. 2008;196(1):298–305. doi:10.1016/j.atherosclerosis.2006.11.00217118371
  • Csiszar A, Labinskyy N, Smith K, Rivera A, Orosz Z, Ungvari Z. Vasculoprotective effects of anti–tumor necrosis factor–α treatment in aging. Am J Pathol. 2007;170(1):388–398. doi:10.2353/ajpath.2007.06070817200210
  • Jiang L, Wang M, Zhang J, et al. Increased aortic calpain–1 activity mediates age–associated angiotensin II signaling of vascular smooth muscle cells. PLoS One. 2008;3(5):e2231. doi:10.1371/journal.pone.000223118493299
  • Marchesi C, Paradis P, Schiffrin EL. Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol Sci. 2008;29:367–374. doi:10.1016/j.tips.2008.05.00318579222
  • Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300:H1566–H1582. doi:10.1152/ajpheart.01310.201021335467
  • Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll–like receptors. Free Radic Biol Med. 2010;48:1121–1132. doi:10.1016/j.freeradbiomed.2010.01.00620083193
  • Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE. Amyloid beta induces oxidative stress–mediated blood–brain barrier changes in capillary amyloid angiopath. Antioxid Redox Signal. 2011;15:1167–1178. doi:10.1089/ars.2011.389521294650
  • Guo S, Kim WJ, Lok J, et al. Neuroprotection via matrix–trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA. 2008;105:7582–7587. doi:10.1073/pnas.080110510518495934
  • Counts SE, Mufson EJ. Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J Neurochem. 2010;113:649–660. doi:10.1111/j.1471-4159.2010.06622.x20132474
  • Sim FJ, Zhao C, Penderis J, Franklin RJ. The age–related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 2002;22:2451–2459. doi:10.1523/JNEUROSCI.22-07-02451.200211923409
  • Asai K, Kudej RK, Shen YT, et al. Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler Thromb Vasc Biol. 2000;20(6):1493–1499.10845863
  • Riddle DR, Sonntag WE, Lichtenwalner RJ. Microvascular plasticity in aging. Ageing Res Rev. 2003;2(2):149–168.12605958
  • Rivard A, Fabre JE, Silver M, et al. Age–dependent impairment of angiogenesis. Circulation. 1999;99(1):111–120.9884387
  • Parfenov VA, Ostroumova TM, Perepelova EM, Perepelov VA, Kochetkov AI, Ostroumova OD. Brain perfusion, cognitive function and vascular age in middle-aged patients with essential arterial hypertension. Cardiology. 2018;58(5):23–31. doi: 10.18087/cardio.2018.5.10117. In Russian.30081806
  • D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117:743–753. doi:10.1161/CIRCULATIONAHA.107.69957918212285
  • Henskens LH, Kroon AA, van Oostenbrugge RJ, et al. Increased aortic pulse wave velocity is associated with silent cerebral small–vessel disease in hypertensive patients. Hypertension. 2008;52:1120–1126. doi:10.1161/YPERTENSIONAHA.108.11902418852384
  • Yang EY, Chambless L, Sharrett AR, et al. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2012;43:103–108. doi:10.1161/STROKEAHA.111.62620022033999
  • Zeki AL, Hazzouri A, Newman AB, et al; Health ABCS. Pulse wave velocity and cognitive decline in elders: the Health, Aging, and Body Composition Study. Stroke. 2013;44:388–393. doi:10.1161/STROKEAHA.112.67353323321445
  • Farooq MU, Min J, Goshgarian C, Gorelick PB. Pharmacotherapy for vascular cognitive impairment. CNS Drugs. 2017;31(9):759–776. doi:10.1007/s40263-017-0459-328786085
  • Epstein OI. Release–activity: a long way from phenomenon to new drugs. Bull Exp Biol Med. 2012;154(1):54–58. doi:10.1007/s10517-012-1874-623330090
  • Epshtein OI, Beregovoi NA, Sorokina NS, Starostina MV, Shtark MB. Effect of various dilutions of the potentiated antibodies to the brain-specific protein S-100 on the post-titanic potentiation in surviving hippocampal slices. Bull Exp Biol Med. 1999;3:317–320. In Russian.
  • Epshtein OI, Gainutdinov KL, Shtark MB. Effect of homeopathic doses of antibodies to antigen S–100 on the electric parameters of neuronal membranes. Bull Exp Biol Med. 1999;4:466–467. In Russian.
  • Voronina TA, Molodavkin GM, Sergeeva SA, Epstein OI. GABAergic system in the anxiolytic effect of Proproten: experimental study. Bull Exp Biol Med. 2003;1:125–127.
  • Kheifets IA, Molodavkin GM, Voronina TA, Dugina YL, Sergeeva SA, Epstein OI. Involvement of the GABAB–ergic system in the mechanism of action of ultralow dose antibodies to S–100 protein. Bull Exp Biol Med. 2008;5:552–554. In Russian.
  • Gorbunov EA, Ertuzun IA, Kachaeva EV, Tarasov SA, Epstein OI. In vitro screening of major neurotransmitter systems possibly involved in the mechanism of action of antibodies to S100 protein in released–active form. Neuropsychiatr Dis Treat N Z. 2015;11:2837–2846. doi:10.2147/NDT.S92456
  • Kheifets IA, Dugina YL, Voronina TA, et al. Involvement of the serotoninergic system in the mechanism of action of ultralow dose antibodies to S–100 protein. Bull Exp Biol Med. 2007;5:535–537. In Russian.
  • Ertuzun IA. Mechanisms of Anxiolytic and Antidepressant Action of Tenoten (Experimental Study) [ PhD Dissertation Abstract]. Tomsk: Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology” (FSBI “Zakusov Institute of Pharmacology”); 2012:23. In Russian.
  • Voronina TA, Borodavkina MV, Heifets IA, Molodavkin GM, Dugina YL, Sergeeva SA. Experimental study of nootropic and anti–amnestic activity of the tenoten in the test of the conditioned reflex of passive avoidance in rats. Second National Congress on Social Psychiatry «Social Transformation and Mental Health»; March 19; 2006; Moscow:171. In Russian.
  • Voronina TA, Belopol’skaya MV, Kheyfets IA, Dugina YL, Sergeeva SA, Epshtein OI. Effect of ultralow doses of antibodies to S–100 protein in animals with impaired cognitive function and disturbed emotional and neurological status under conditions of experimental Alzheimer disease. Bull Exp Biol Med. 2009;148(1):533–535. doi:10.1007/s10517-010-0757-y20396733
  • Voronina TA, Molodavkin GM, Borodavkina MV, Kheyfets IA, Dugina YL, Sergeeva SA. Nootropic and antiamnestic effects of tenoten (pediatric formulation) in immature rat pups. Bull Exp Biol Med. 2009;148(1):524–526. doi:10.1007/s10517-010-0754-120396730
  • Romanova GA, Barskov IV, Ostrovskaia RU, Gudasheva TA, Viktorov IV. Behavioral and morphologic disorders caused by bilateral photoinduced thrombosis of the cerebral vessels of the frontal cortex in rats. Patol Fiziol Eksp Ter. 1998;2:8–10. In Russian.
  • Voronina TA, Kheifets IA, Dugina YL, Sergeeva SA, Epstein OI. Study of the effects of preparation containing ultralow doses of antibodies to S–100 protein in experimental hemorrhagic stroke. Bull Exp Biol Med. 2009;148(1):530–532. doi:10.1007/s10517-010-0756-z20396732
  • Voronina TA, Sergeeva SA, Martyushev–Poklad AV, Dugina JL, Epstein OI. Antibodies to S–100 protein in anxiety–depressive disorders in experimental and clinical conditions. Anim Model Biol Psychiatry Nov Sci Publ. 2006;8:137–152.
  • Kheyfets IA, Voronina TA, Dugina JL, Molodavkin GM, Sergeeva SA. Anxiolytic activity of tenoten and diazepam depends on conditions in vogel conflict test. Bull Exp Biol Med. 2011;151(3):336–339. doi:10.1007/s10517-011-1324-x. In Russian.22451881
  • Voronina TA, Molodavkin GM, Sergeeva SA, Epstein OI. Anxiolytic effect of proproten under conditions of punished and unpunished behavior. Bull Exp Biol Med. 2003;1:120–122.
  • Epstein OI, Molodavkin GM, Voronina TA, Sergeeva SA. Antidepressant properties of proproten and amitriptyline: comparative experimental study. Bull Exp Biol Med. 2003;135(7):123–124. doi:10.1023/A:1024724023144
  • Zhavbert EV Pharmacological Activity of Antibodies to Endothelial NO–Synthase in the Released–Active form on the Model of Erectile Dysfunction [PhD Dissertation Abstract]. Tomsk: Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology” (FSBI “Zakusov Institute of Pharmacology”); 2016:25. In Russian.
  • Belous AU, Arustamova AA, Pokrovsky MV, Korokin MV, Gudyrev OS, Belous VS. L–NAME and hypoestrogen–induced endothelial dysfunction treatment with impaza. Sci bull Belgorod State Univ Ser: Med Pharm. 2011;4(99):116–120. In Russian.
  • Arustamova AA The Anti–Ischemic and Endothelioprotective Effect of Potentiated Antibodies to the Endothelial Growth Factor of Blood Vessels [PhD Dissertation Abstract]. Belgorod; 2011:22. In Russian.
  • Chernyshova GA, Aliev OI, Smoljakova VI, Plotnikov MB, Martyushev AV, Sergeeva SA. Impaza and sildenafil influence on the cardiovascular system and the hypotensive effect of nitroglycerin. X Russian National Congress «Man and Medicine»; April 7–11, 2003:683. In Russian.
  • Markel’ AL, Zhavbert ES, Tarasov SA, et al. Effect of impaza on cardiovascular system. Bull Exp Biol Med. 2009;148(1):518–519. doi:10.1007/s10517-010-0752-320396728
  • Kardash EV, Gorbunov EA, Tarasov AV, Yakovleva NN, Tarasov SA. Divaza influence on sigma receptors regulating the basic neurotransmitter systems. XXIII Russian National Congress «Man and medicine»; April 11–14, 2016:181. In Russian.
  • Ganinа KK, Duginа YL, Zhavbert ES, et al. Antiamnesic effects divaza and its component model β–amyloid amnesia. Zh Nevrol Psikhiatr Im S S Korsakova. 2016;116(9):69–74. doi: 10.17116/jnevro20161169169-74. In Russian.
  • Zhavbert ES, Guryanova NN, Surkova EI, Dugina YL, Kachaeva EV, Epshtein OI. Divaza influence on the processes of lipid peroxidation. XXI Russian National Congress «Man and medicine»; April 7–11, 2014:242. In Russian.
  • Yakovleva NN, Voronina TA, Suslov NI, et al. Anxiolytic and antidepressant effects of divaza and brizantin. Bull Exp Biol Med. 2015;159(6):753–756. doi:10.1007/s10517-015-3067-626519263
  • Gonzalez–Alvear GM, Werling LL. Sigma receptor regulation of norepinephrine release from rat hippocampal slices. Brain Res Elsevie. 1995;673(1):61–69. doi:10.1016/0006-8993(94)01394-W
  • Maurice T, Su TP, Privat A. Sigma1-receptor agonists and neurosteroids attenuate B25–35–amyloid peptide–induced amnesia in mice through a common mechanism. Neurosci U S. 1998;83(2):413–428.
  • Hayashi T, Su TP. Sigma–1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs N Z. 2004;18(5):269–284. doi:10.2165/00023210-200418050-00001
  • Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP. Targeting ligand–operated chaperone sigma–1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Target Engl. 2011;15(5):557–577. doi:10.1517/14728222.2011.560837
  • Castagne V, Lemaire M, Kheyfets I, Dugina JL, Sergeeva SA, Epstein OI. Antibodies to S100 proteins have anxiolytic–like activity at ultra–low doses in the adult rat. J Pharm Pharmacol. 2008;60(3):309–316. doi:10.1211/jpp.60.3.000518284810
  • Epstein OI. Ultra–Low Doses (History of One Research). Moscow: RAMS Publishing House; 2008:336.
  • Fisenko VP, editor. Guidelines for Experimental (Preclinical) Studies of New Pharmacological Substances. Moscow: «Remedium»; 2000:398. In Russian.
  • Khabriev RU, editor. Guidelines for Experimental (Preclinical) Studies of New Pharmacological Substances. Moscow: «Medicine»; 2005:832. In Russian.
  • Fateeva VV, Shumakher GI, Vorob’eva EN, Khoreva MA, Voskanyan LR. The efficacy and safety of drug therapy Divaza in patients with chronic cerebral ischemia. Zh Nevrol Psikhiatr Im S S Korsakova. 2017;117(2):32–37. doi: 10.17116/jnevro20171172132-37. In Russian.
  • Kamchatnov PR, Vorob’eva OV, Rachin AP. Treatment of emotional and cognitive disorders in patients with chronic cerebral ischemia. Zh Nevrol Psikhiatr Im S S Korsakova. 2014;114(4):52–56. In Russian.
  • Parfenov VА, Kamchatnov PR, Vorobyova ОV, Gustov АV, Glushkov КS, Doronina ОB. Results of multicenter study of efficacy and safety of Divaza in the treatment of the asthenic and mild to moderate cognitive disorders in elderly and senile subjects. Zh Nevrol Psikhiatr Im S S Korsakova. 2017;117(9):43–50. doi: 10.17116/jnevro20171179143-50. In Russian.
  • Parfenov VA, Zhivolupov SA, Nikulina KV, et al. Diagnosis and treatment of cognitive impairment in patients with chronic cerebral ischemia: the results of observational Russian program DIAMANT. Zh Nevrol Psikhiatr Im S S Korsakova. 2018;118(6):15–23. doi: 10.17116/jnevro20181186115. In Russian.
  • Guidelines for preparing core clinical-safety information on drugs, including new proposals for investigators Brochures. Report of CIOMS Working Groups III and V. Geneva (Switzerland): CIOMS. ISBN 92 9036 070 4.