84
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effects of repetitive magnetic stimulation on the growth of primarily cultured hippocampus neurons in vitro and their expression of iron-containing enzymes

, , , , &
Pages 927-934 | Published online: 11 Apr 2019

References

  • Kaskie RE, Ferrarelli F. Investigating the neurobiology of schizophrenia and other major psychiatric disorders with Transcranial Magnetic Stimulation. Schizophr Res. 2018;192:30–38. doi:10.1016/j.schres.2017.04.045
  • Di Lazzaro V. Biological effects of non-invasive brain stimulation. Handb Clin Neurol. 2013;116:367–374. doi:10.1016/B978-0-444-53497-2.00030-9
  • Lee JY, Park HJ, Kim JH, Cho BP, Cho SR, Kim SH. Effects of low- and high-frequency repetitive magnetic stimulation on neuronal cell proliferation and growth factor expression: a preliminary report. Neurosci Lett. 2015;604:167–172. doi:10.1016/j.neulet.2015.07.038
  • Shokrollahi S, Ghanati F, Sajedi RH, Sharifi M. Possible role of iron containing proteins in physiological responses of soybean to static magnetic field. J Plant Physiol. 2018;226:163–171. doi:10.1016/j.jplph.2018.04.018
  • Clarke D, Penrose MA, Penstone T, et al. Frequency-specific effects of repetitive magnetic stimulation on primary astrocyte cultures. Restor Neurol Neurosci. 2017;35:557–569. doi:10.3233/RNN-160708
  • Baek A, Kim JH, Pyo S, et al. The differential effects of repetitive magnetic stimulation in an in vitro neuronal model of ischemia/reperfusion injury. Front Neurol. 2018;9:50. doi:10.3389/fneur.2018.00050
  • Ma J, Zhang Z, Su Y, et al. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons. Neurochem Int. 2013;62:84–91. doi:10.1016/j.neuint.2012.11.010
  • Grehl S, Martina D, Goyenvalle C, Deng ZD, Rodger J, Sherrard RM. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields. Front Neural Circuits. 2016;10:85. doi:10.3389/fncir.2016.00085
  • Rueter D. Induction coil as a non-contacting ultrasound transmitter and detector: modeling of magnetic fields for improving the performance. Ultrasonics. 2016;65:200–210. doi:10.1016/j.ultras.2015.10.003
  • Banerjee J, Sorrell ME, Celnik PA, Pelled G. Immediate effects of repetitive magnetic stimulation on single cortical pyramidal neurons. PLoS One. 2017;12:e0170528. doi:10.1371/journal.pone.0170528
  • Peterchev AV, Wagner TA, Miranda PC, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 2012;5:435–453. doi:10.1016/j.brs.2011.10.001
  • Yu Z, Men Y, Dong P. Schwann cells promote the capability of neural stem cells to differentiate into neurons and secret neurotrophic factors. Exp Ther Med. 2017;13:2029–2035. doi:10.3892/etm.2017.4183
  • Abbasnia K, Ghanbari A, Abedian M, Ghanbari A, Sharififar S, Azari H. The effects of repetitive transcranial magnetic stimulation on proliferation and differentiation of neural stem cells. Anat Cell Biol. 2015;48:104–113. doi:10.5115/acb.2015.48.2.104
  • Goldsworthy MR, Pitcher JB, Ridding MC. The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex. Eur J Neurosci. 2012;35:125–134. doi:10.1111/j.1460-9568.2011.07924.x
  • Shin SS, Krishnan V, Stokes W, et al. Transcranial magnetic stimulation and environmental enrichment enhances cortical excitability and functional outcomes after traumatic brain injury. Brain Stimul. 2018;11:1306–1313. doi:10.1016/j.brs.2018.07.050
  • Randver R. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex to alleviate depression and cognitive impairment associated with Parkinson’s disease: a review and clinical implications. J Neurol Sci. 2018;393:88–99. doi:10.1016/j.jns.2018.08.014
  • Hulst HE, Goldschmidt T, Nitsche MA, et al. rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88:386–394. doi:10.1136/jnnp-2016-314224
  • Leahu P, Matei A, Groppa S. Transcranial magnetic stimulation in migraine prophylaxis. J Med Life. 2018;11:175–176.
  • Pleger B, Blankenburg F, Bestmann S, et al. Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. J Neurosci. 2006;26:1945–1952. doi:10.1523/JNEUROSCI.4097-05.2006
  • Lu X, Bao X, Li J, et al. High-frequency repetitive transcranial magnetic stimulation for treating moderate traumatic brain injury in rats: a pilot study. Exp Ther Med. 2017;13:2247–2254. doi:10.3892/etm.2017.4283
  • Ma J, Zhang Z, Kang L, et al. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp Gerontol. 2014;58:256–268. doi:10.1016/j.exger.2014.08.011
  • Shang Y, Wang X, Shang X, et al. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol Learn Mem. 2016;134(Pt B):369–378. doi:10.1016/j.nlm.2016.08.016
  • Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol. 2014;5:124. doi:10.3389/fphar.2014.00124
  • Edwards MJ, Hall A, Shi L, et al. The crystal structure of the extracellular 11-heme cytochrome Und A reveals a conserved 10-heme motif and defined binding site for soluble iron chelates. Structure. 2012;20:1275–1284. doi:10.1016/j.str.2012.04.016
  • Boehm-Sturm P, Haeckel A, Hauptmann R, Mueller S, Kuhl CK, Schellenberger EA. Low-molecular-weight iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced MR imaging. Radiology. 2018;286:537–546. doi:10.1148/radiol.2017170116
  • Goodwill AM, Lum J, Hendy AM, et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis. Sci Rep. 2017;7:14840. doi:10.1038/s41598-017-13260-z
  • Buchachenko A, Lawler RG. New possibilities for magnetic control of chemical and biochemical reactions. Acc Chem Res. 2017;50:877–884. doi:10.1021/acs.accounts.6b00608
  • Aida L, Soumaya G, Myriam E, Mohsen S, Hafedh A. Effects of static magnetic field exposure on plasma element levels in rat. Biol Trace Elem Res. 2014;160:67–72. doi:10.1007/s12011-014-9987-6
  • Holmes-Hampton GP, Ghosh MC, Rouault TA. Methods for studying iron regulatory protein 1: an important protein in human iron metabolism. Methods Enzymol. 2018;599:139–155. doi:10.1016/bs.mie.2017.09.006
  • Lu Z, Hunter T. Metabolic kinases moonlighting as protein kinases. Trends Biochem Sci. 2018;43:301–310. doi:10.1016/j.tibs.2018.01.006
  • Tunez I, Montilla P, Del CMM, Medina FJ, Drucker-Colin R. Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes. Neurosci Res. 2006;56:91–95. doi:10.1016/j.neures.2006.05.012
  • Liu W, Du Y, Liu J, et al. Effects of atrazine on the oxidative damage of kidney in Wister rats. Int J Clin Exp Med. 2014;7:3235–3243.
  • Ni Z, Chen R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl Neurodegener. 2015;4:22. doi:10.1186/s40035-015-0045-x
  • Khodagholi F, Shaerzadeh F, Montazeri F. Mitochondrial aconitase in Neurodegenerative disorders: role of a metabolism-related molecule in neurodegeneration. Curr Drug Targets. 2018;19(8):973–985. doi:10.2174/1389450118666170816124203
  • Baek A, Park EJ, Kim SY, et al. High-Frequency Repetitive Magnetic Stimulation Enhances the Expression of Brain-Derived Neurotrophic Factor Through Activation of Ca(2+)-Calmodulin-Dependent Protein Kinase II-cAMP-Response Element-Binding Protein Pathway. Front Neurol. 2018;9:285. doi:10.3389/fneur.2018.00285