327
Views
35
CrossRef citations to date
0
Altmetric
Review

What are the links between hypoxia and Alzheimer’s disease?

, &
Pages 1343-1354 | Published online: 21 May 2019

References

  • Prince M, Knapp M, Guerchet M, et al. Dementia UK: Update. 2nd ed U.K: Alzheimer’s Society; 2014 Available from: https://www.alzheimers.org.uk/info/20025/policy_and_influencing/251/dementia_uk.
  • Lancet T. Dementia burden coming into focus. Lancet. 2017;390(10113):2606. doi:10.1016/S0140-6736(17)33304-4
  • Dementia. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 224, 2019.
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–185.1566067
  • LaFerla FM Amyloid-β and tau in Alzheimer’s disease. [updated 5, 2008] Available from: http://www.nature.com/nrn/posters/ad/index.html. Accessed 415, 2017.
  • Mudher A, Lovestone S. Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci. 2002;25(1):22–26.11801334
  • Shi J, Yang SH, Stubley L, Day AL, Simpkins JW. Hypoperfusion induces overexpression of beta-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res. 2000;853(1):1–4.10627301
  • Hall ED, Oostveen JA, Dunn E, Carter DB. Increased amyloid protein precursor and apolipoprotein E immunoreactivity in the selectively vulnerable hippocampus following transient forebrain ischemia in gerbils. Exp Neurol. 1995;135(1):17–27. doi:10.1006/exnr.1995.10627556550
  • Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997;77(4):1081–1132.9354812
  • Webster NJ, Green KN, Settle VJ, Peers C, Vaughan PFT. Altered processing of the amyloid precursor protein and decreased expression of ADAM 10 by chronic hypoxia in SH-SY5Y: no role for the stress-activated JNK and p38 signalling pathways. Brain Res Mol Brain Res. 2004;130(1–2):161–169. doi:10.1016/j.molbrainres.2004.06.04215519686
  • Auerbach ID, Vinters HV. Effects of anoxia and hypoxia on amyloid precursor protein processing in cerebral microvascular smooth muscle cells. J Neuropathol Exp Neurol. 2006;65(6):610–620.16783171
  • Rybnikova E, Gluschenko T, Galeeva A, et al. Differential expression of ADAM15 and ADAM17 metalloproteases in the rat brain after severe hypobaric hypoxia and hypoxic preconditioning. Neurosci Res. 2012;72(4):364–373. doi:10.1016/j.neures.2011.12.01022230263
  • Sun X, He G, Qing H, et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A. 2006;103(49):18727–18732. doi:10.1073/pnas.060629810317121991
  • Peers C, Dallas ML, Boycott HE, Scragg JL, Pearson HA, Boyle JP. Hypoxia and neurodegeneration. Ann N Y Acad Sci. 2009;1177:169–177. doi:10.1111/j.1749-6632.2009.05026.x19845619
  • Wang R, Zhang Y-W, Zhang X, et al. Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J Off Publ Fed Am Soc Exp Biol. 2006;20(8):1275–1277. doi:10.1096/fj.06-5839fje
  • Pluta R, Jabłoński M, Ułamek-Kozioł M, et al. Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes. Mol Neurobiol. 2013;48(3):500–515. doi:10.1007/s12035-013-8439-123519520
  • Liu H, Qiu H, Yang J, Ni J, Le W. Chronic hypoxia facilitates Alzheimer’s disease through demethylation of γ-secretase by downregulating DNA methyltransferase 3b. Alzheimers Dement J Alzheimers Assoc. 2016;12(2):130–143. doi:10.1016/j.jalz.2015.05.019
  • Kerridge C, Kozlova DI, Nalivaeva NN, Turner AJ. Hypoxia affects neprilysin expression through caspase activation and an APP intracellular domain-dependent mechanism. Front Neurosci. 2015;9:426. doi:10.3389/fnins.2015.0042626617481
  • Wang Z, Zhang X-J, Li T, Li J, Tang Y, Le W. Valproic acid reduces neuritic plaque formation and improves learning deficits in APP(Swe)/PS1(A246E) transgenic mice via preventing the prenatal hypoxia-induced down-regulation of neprilysin. CNS Neurosci Ther. 2014;20(3):209–217. doi:10.1111/cns.1218624289518
  • Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med N Y. 2010;77(1):32–42. doi:10.1002/msj.20157
  • Supnet C, Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer’s disease. J Alzheimers Dis JAD. 2010;20(Suppl 2):S487–S498. doi:10.3233/JAD-2010-10030620413848
  • Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A. 1993;90(2):567–571.8380642
  • Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430(7000):631–639. doi:10.1038/nature0262115295589
  • Cha M-Y, Han S-H, Son SM, et al. Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death. PLoS One. 2012;7(4):e34929. doi:10.1371/journal.pone.003492922514691
  • Kadowaki H, Nishitoh H, Urano F, et al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12(1):19–24. doi:10.1038/sj.cdd.440152815592360
  • Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci Off J Soc Neurosci. 2000;20(4):1386–1392. doi:10.1523/JNEUROSCI.20-04-01386.2000
  • Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci Off J Soc Neurosci. 2003;23(12):5088–5095. doi:10.1523/JNEUROSCI.23-12-05088.2003
  • Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. 2010;7(4):338–353. doi:10.1016/j.nurt.2010.07.00620880499
  • Green KN, Peers C. Amyloid beta peptides mediate hypoxic augmentation of Ca(2+) channels. J Neurochem. 2001;77(3):953–956.11331424
  • Webster NJ, Ramsden M, Boyle JP, Pearson HA, Peers C. Amyloid peptides mediate hypoxic increase of L-type Ca2+ channels in central neurones. Neurobiol Aging. 2006;27(3):439–445. doi:10.1016/j.neurobiolaging.2005.02.00216464656
  • Scragg JL, Fearon IM, Boyle JP, Ball SG, Varadi G, Peers C. Alzheimer’s amyloid peptides mediate hypoxic up-regulation of L-type Ca2+ channels. FASEB J. 2005;19(1):150–152. doi:10.1096/fj.04-2659fje15494446
  • Boycott HE, Dallas M, Boyle JP, Pearson HA, Peers C. Hypoxia suppresses astrocyte glutamate transport independently of amyloid formation. Biochem Biophys Res Commun. 2007;364(1):100–104. doi:10.1016/j.bbrc.2007.09.10217927959
  • Kristián T, Siesjö BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705–718.9506616
  • Smith IF, Boyle JP, Plant LD, Pearson HA, Peers C. Hypoxic remodeling of Ca2+ stores in type i cortical astrocytes. J Biol Chem. 2003;278(7):4875–4881. doi:10.1074/jbc.M20920620012477727
  • Smith IF, Plant LD, Boyle JP, Skinner RA, Pearson HA, Peers C. Chronic hypoxia potentiates capacitative Ca2+ entry in type-I cortical astrocytes. J Neurochem. 2003;85(5):1109–1116.12753070
  • Smith IF, Boyle JP, Vaughan PF, Pearson HA, Peers C. Effects of chronic hypoxia on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. J Neurochem. 2001;79(4):877–884.11723180
  • Streit WJ, Mrak RE, Griffin WST. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1:14. doi:10.1186/1742-2094-1-1415285801
  • Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018–1027. doi:10.1038/nm.439728886007
  • Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. doi:10.1016/S1474-4422(15)70016-525792098
  • Xing C, Arai K, Lo EH, Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke Off J Int Stroke Soc. 2012;7(5):378–385. doi:10.1111/j.1747-4949.2012.00839.x
  • Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis. 2010;37(3):503–509. doi:10.1016/j.nbd.2009.10.00619833208
  • Combs CK. Inflammation and microglia actions in Alzheimer’s disease. J Neuroimmune Pharmacol off J Soc Neuroimmune Pharmacol. 2009;4(4):380–388. doi:10.1007/s11481-009-9165-3
  • Hayes A, Thaker U, Iwatsubo T, Pickering-Brown SM, Mann DMA. Pathological relationships between microglial cell activity and tau and amyloid beta protein in patients with Alzheimer’s disease. Neurosci Lett. 2002;331(3):171–174.12383924
  • Okello A, Edison P, Archer HA, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72(1):56–62. doi:10.1212/01.wnl.0000338622.27876.0d19122031
  • Liu J, Bartels M, Lu A, Sharp FR. Microglia/macrophages proliferate in striatum and neocortex but not in hippocampus after brief global ischemia that produces ischemic tolerance in gerbil brain. J Cereb Blood Flow Metab. 2001;21(4):361–373. doi:10.1097/00004647-200104000-0000511323522
  • Zhang Z, Chopp M, Powers C. Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion. Brain Res. 1997;744(2):189–198. doi:10.1016/S0006-8993(96)01085-29027378
  • Gerhard A, Neumaier B, Elitok E, et al. In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport. 2000;11(13):2957–2960.11006973
  • Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.10858586
  • Hohsfield LA, Humpel C. Migration of blood cells to β-amyloid plaques in Alzheimer’s disease. Exp Gerontol. 2015;65:8–15. doi:10.1016/j.exger.2015.03.00225752742
  • Bona E, Andersson AL, Blomgren K, et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res. 1999;45(4 Pt 1):500–509. doi:10.1203/00006450-199904010-0000810203141
  • Naldini A, Carraro F, Silvestri S, Bocci V. Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. J Cell Physiol. 1997;173(3):335–342. doi:10.1002/(SICI)1097-4652(199712)173:3<335::AID-JCP5>3.0.CO;2-O9369946
  • Ceulemans A-G, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation. 2010;7:74. doi:10.1186/1742-2094-7-7421040547
  • Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta BBA - Mol Cell Res. 2016;1863(6, Part A):1218–1227. doi:10.1016/j.bbamcr.2016.03.018
  • Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta. 2010;1797(6–7):1171–1177. doi:10.1016/j.bbabio.2010.02.01120153717
  • Wheaton WW, Chandel NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol - Cell Physiol. 2011;300(3):C385–C393. doi:10.1152/ajpcell.00485.201021123733
  • Yenari MA, Kauppinen TM, Swanson RA. Microglial activation in stroke: therapeutic targets. Neurother J Am Soc Exp Neurother. 2010;7(4):378–391. doi:10.1016/j.nurt.2010.07.005
  • Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem. 2003;278(15):13309–13317. doi:10.1074/jbc.M20947820012551918
  • Faraco G, Fossati S, Bianchi ME, et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem. 2007;103(2):590–603. doi:10.1111/j.1471-4159.2007.04788.x17666052
  • Mazarati A, Maroso M, Iori V, Vezzani A, Carli M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp Neurol. 2011;232(2):143–148. doi:10.1016/j.expneurol.2011.08.01221884699
  • Fujita K, Motoki K, Tagawa K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci Rep. 2016;6:31895. doi:10.1038/srep3189527557632
  • Kobayashi S, Millhorn DE. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells. J Neurochem. 2001;76(6):1935–1948.11259512
  • Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–182. doi:10.1146/annurev.ne.13.030190.0011311970230
  • Spampinato SF, Copani A, Nicoletti F, Sortino MA, Caraci F. Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front Mol Neurosci. 2018;11. doi:10.3389/fnmol.2018.00414.
  • Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine – searching for the connections. Br J Pharmacol. 2012;167(2):324–352. doi:10.1111/j.1476-5381.2012.02057.x22646481
  • Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PGM. The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res. 2011;221(2):594–603. doi:10.1016/j.bbr.2010.05.03320553766
  • Sandstead HH, Frederickson CJ, Penland JG. History of zinc as related to brain function. J Nutr. 2000;130(2):496S–502S. doi:10.1093/jn/130.2.496S10721938
  • Kim S, Seo J-W, Oh SB, et al. Disparate roles of zinc in chemical hypoxia-induced neuronal death. Front Cell Neurosci. 2015;9. doi:10.3389/fncel.2015.00001
  • Frederickson CJ, Cuajungco MP, Frederickson CJ. Is zinc the link between compromises of brain perfusion (excitotoxicity) and Alzheimer’s disease? J Alzheimers Dis JAD. 2005;8(2):155–160; discussion 209–215.
  • Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA. Zinc triggers microglial activation. J Neurosci Off J Soc Neurosci. 2008;28(22):5827–5835. doi:10.1523/JNEUROSCI.1236-08.2008
  • Thielke S, Slatore CG, Banks WA. Association between Alzheimer dementia mortality rate and altitude in California counties. JAMA Psychiatry. 2015;72(12):1253–1254. doi:10.1001/jamapsychiatry.2015.185226502029
  • Hu SL, Xiong W, Dai ZQ, Zhao HL, Feng H. Cognitive changes during prolonged stay at high altitude and its correlation with C-reactive protein. PLoS One. 2016;11(1). doi:10.1371/journal.pone.0146290
  • Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol - Regul Integr Comp Physiol. 2014;307(10):R1181–R1197. doi:10.1152/ajpregu.00208.201425231353
  • Schega L, Peter B, Törpel A, Mutschler H, Isermann B, Hamacher D. Effects of intermittent hypoxia on cognitive performance and quality of life in elderly adults: a pilot study. Gerontology. 2013;59(4):316–323. doi:10.1159/00035092723652274
  • Tsai YW, Yang YR, Chen GH, Chang HC, Wang RY. The time window of intermittent hypoxia intervention after middle cerebral artery occlusion. Chin J Physiol. 2008;51(5):324–328.19175189
  • Mashina SY, Aleksandrin VV, Goryacheva AV, et al. Adaptation to hypoxia prevents disturbances in cerebral blood flow during neurodegenerative process. Bull Exp Biol Med. 2006;142(2):169–172. doi:10.1007/s10517-006-0318-617369930
  • Ferini-Strambi L, Lombardi GE, Marelli S, Galbiati A. Neurological deficits in obstructive sleep apnea. Curr Treat Options Neurol. 2017;19(4):16. doi:10.1007/s11940-017-0451-828374233
  • Daulatzai MA. Evidence of neurodegeneration in obstructive sleep apnea: relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J Neurosci Res. 2015;93(12):1778–1794. doi:10.1002/jnr.2363426301370