148
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Evaluation of α-synuclein and apolipoprotein E as potential biomarkers in cerebrospinal fluid to monitor pharmacotherapeutic efficacy in dopamine dictated disease states of Parkinson’s disease and schizophrenia

, , , , , , , , , & show all
Pages 2073-2085 | Published online: 19 Jul 2019

References

  • Mollenhauer B, Weintraub D. The depressed brain in Parkinson’s disease: implications for an inflammatory biomarker. Proc Natl Acad Sci U S A. 2017;114(12):3004–3005. doi:10.1073/pnas.170073711428283656
  • de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–535. doi:10.1016/S1474-4422(06)70471-916713924
  • Mehanna R, Moore S, Hou JG, Sarwar AI, Lai EC. Comparing clinical features of young onset, middle onset and late-onset Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(5):530–534. doi:10.1016/j.parkreldis.2014.02.01324631501
  • Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. PT. 2014;39(9):638–645.
  • Gore FM, Bloem PJ, Patton GC, et al. Global burden of disease in young people aged 10–24 years: a systematic analysis. Lancet. 2011;377(9783):2093–2102. doi:10.1016/S0140-6736(11)60512-621652063
  • Millan MJ, Andrieux A, Bartzokis G, et al. Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov. 2016;15(7):485–515. doi:10.1038/nrd.2016.2826939910
  • Bogerts B, Häntsch J, Herzer M. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. BiolPsychiatry. 1983;18(9):951–969.
  • Kinoshita K, Tada Y, Muroi Y. Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning. Life Sci. 2015;137:28–36. doi:10.1016/j.lfs.2015.07.01726209139
  • Grace A. Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology. 2012;62(3):1342–1348. doi:10.1016/j.neuropharm.2011.05.01121621548
  • Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat. 2008;4(4):743–757.19043519
  • Li P, Snyder GL, Vanover KE. Dopamine targeting drugs for the treatment of schizophrenia: past, present, and future. Curr Top Med Chem. 2016;16(29):3385–3403.27291902
  • Caroff SN, Hurford I, Lybrand J, Campbell EC. Movement disorders induced by antipsychotic drugs: implications of the CATIE schizophrenia trial. Neurol Clin. 2011;29(1):127–128. doi:10.1016/j.ncl.2010.10.00221172575
  • Hariprasad G, Hariprasad R, Kumar L, Srinivasan A, Kola S, Kaushik A. Apolipoprotein A1 as a potential biomarker in the ascitic fluid for the differentiation of advanced ovarian cancers. Biomarkers. 2013;18(6):532–541. doi:10.3109/1354750X.2013.82256123902290
  • Rukmangadachar LA, Makharia GK, Mishra A, et al. Proteome analysis of the macroscopically affected colonic mucosa of Crohn’s disease and intestinal tuberculosis. Sci Rep. 2016;6:23162. doi:10.1038/srep2316226988818
  • Sehrawat U, Pokhriyal R, Gupta AK, et al. Proteomic analysis of advanced ovarian cancer tissue to identify potential biomarkers of responders and nonresponders to first-line chemotherapy of carboplatin and paclitaxel. Biomark Cancer. 2016;16(8):43–56.
  • Kataria J, Rukmangadachar LA, Hariprasad G, et al. Two-dimensional difference gel electrophoresis analysis of cerebrospinal fluid in tuberculous meningitis patients. J Proteomics. 2011;74(10):2194–2203. doi:10.1016/j.jprot.2011.06.02021723968
  • Rukmangadachar LA, Kataria J, Hariprasad G, Samantaray JC, Srinivasan A. Two-dimensional difference gel electrophoresis (DIGE) analysis of sera from visceral leishmaniasis patients. Clin Proteomics. 2011;8(1):4. doi:10.1186/1559-0275-8-221906353
  • Manral P, Sharma P, Hariprasad G, Chandralekha TM, Srinivasan A. Can apolipoproteins and complement factors be biomarkers of Alzheimer’s disease? CurrAlzheimer Res. 2012;9(8):935–943.
  • Chahine LM, Stern MB, Chen-Plotkin A. Blood-based biomarkers for Parkinson’s disease. ParkinsonismRelatDisord. 2014;20:S99–S103.
  • Sabherwal S, English JA, Föcking M, Cagney G, Cotter DR. Blood biomarker discovery in drug-free schizophrenia: the contribution of proteomics and multiplex immunoassays. Expert Rev Proteomics. 2016;13(12):1141–1155. doi:10.1080/14789450.2016.125226227771981
  • Gupta AK, Rani K, Swarnkar S, et al. Evaluation of serum apolipoprotein E as a potential biomarker for pharmacological therapeutic efficacy monitoring in dopamine dictated disease spectrum of schizophrenia and Parkinson’s disease. J Cent NervSyst Dis. 2018;10:1179573518803585.
  • Gupta AK, Kumar GK, Rani K, et al. 2D-DIGE as a strategy to identify serum protein biomarkers to monitor pharmacological efficacy in dopamine dictated states of Parkinson’s disease and schizophrenia. Neuropsychiatr Dis Treat. 2019;15:1031–1044. doi:10.2147/NDT.S19855931114209
  • Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622–630.3283935
  • Yu CE, Cudaback E, Foraker J, et al. Epigenetic signature and enhancer activity of the human APOE gene. Hum Mol Genet. 2013;22(24):5036–5047. doi:10.1093/hmg/ddt35423892237
  • Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res. 1999;40(1):1–6.9869645
  • Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Re Genomics Hum Genet. 2000;1:507–537. doi:10.1146/annurev.genom.1.1.507
  • Zerba KE, Ferrell RE, Sing CF. Complex adaptive systems and human health: the influence of common genotypes of the apolipoprotein E (ApoE) gene polymorphism and age on the relational order within a field of lipid metabolism traits. Hum Genet. 2000;107(5):466–475.11140944
  • Harhangi BS, de Rijk MC, Van Duijn CM, et al. APOE and the risk of PD with or without dementia in a population-based study. Neurology. 2000;54(6):1272–1276. doi:10.1212/wnl.54.6.127210746597
  • Souza DR, de Godoy MR, Hotta J, et al. Association of apolipoprotein E polymorphism in late-onset Alzheimer’s disease and vascular dementia in Brazilians. Braz J Med Biol Res. 2003;36(7):919–923. doi:10.1590/s0100-879x200300070001312845379
  • Mata IF, Leverenz JB, Weintraub D, et al. APOE, MAPT, SNCA, and cognitive performance in Parkinson disease. JAMA Neurol. 2014;71(11):1405–1412. doi:10.1001/jamaneurol.2014.145525178429
  • Gibbons AS, Udawela M, Jeon WJ, Seo MS, Brooks L, Dean B. The neurobiology of APOE in schizophrenia and mood disorders. Front Biosci. 2011;16:962–979. doi:10.2741/3729
  • Chen X, de Silva HA, Pettenati MJ, et al. The human NACP/α-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis. Genomics. 1995;26(2):425–427.7601479
  • Withers GS, George JM, Banker GA, Clayton DF. Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res Dev Brain Res. 1997;99:87–94.9088569
  • Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE. α-synuclein-membrane interactions and lipid specificity. J Biol Chem. 2000;275(44):34328–34334. doi:10.1074/jbc.M00434520010915790
  • Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH. Lipid rafts mediate the synaptic localization of α-synuclein. J Neurosci. 2004;24(30):6715–6723. doi:10.1523/JNEUROSCI.1594-04.200415282274
  • Xu L, Pu J. α-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application. Parkinsons Dis. 2016;2016:1720621.27610264
  • Olanow CW, Brundin P. Parkinson’s disease and alpha-synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord. 2013;28(1):31–40. doi:10.1002/mds.2537323390095
  • Demirel ÖF, Cetin İ, Turan Ş, Sağlam T, Yıldız N, Duran A. Decreased expression of α-Synuclein, Nogo-A, and UCH-L1 in patients with schizophrenia: a preliminary serum study. Psychiatry Investig. 2017;14(3):344–349. doi:10.4306/pi.2017.14.3.344
  • Noori-Daloii MR, Kheirollahi M, Mahbod P, et al. Alpha- and beta-synucleins mRNA expression in lymphocytes of schizophrenia patients. Genet Test Mol Biomarkers. 2010;14(5):725–729. doi:10.1089/gtmb.2010.005020854101
  • Chou KL, Taylor JL, Patil PG. The MDS–UPDRS tracks motor and non– a motor improvement due to subthalamic nucleus deep brain stimulation in Parkinson disease. Parkinsonism Relat Disord. 2013;19(11):966–969. doi:10.1016/j.parkreldis.2013.06.01023849499
  • Goetz CG, Poewe W, Rascol O, et al. Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendation. Mov Disord. 2004;19:1020–1028. doi:10.1002/mds.2021315372591
  • World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. Clinical descriptions and diagnostic guidelines. Available from: https://apps.who.int/iris/handle/10665/37958. Accessed June 28, 2019.
  • Ganapathiraju MK, Thahir M, Handen A, et al. Schizophrenia interactome with 504 novel protein-protein interactions. NPJ Schizophr. 2016;2:16012. doi:10.1038/npjschz.2016.1227336055
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.123930314597658
  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–432. doi:10.1093/bioinformatics/btq67521149340
  • Chatr-Aryamontri A, Ceol A, Palazzi LM, et al. MINT: the Molecular INTeraction database. Nucleic Acids Res. 2007;35:D572–D574. doi:10.1093/nar/gkl95017135203
  • Gao J, Ade AS, Tarcea VG, et al. Integrating and annotating the interactome using the MiMI plugin for Cytoscape. Bioinformatics. 2009;5(1):137–138. doi:10.1093/bioinformatics/btn501
  • Jensen LJ, Kuhn M, Stark M, et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–D416. doi:10.1093/nar/gkn76018940858
  • Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database-2009 update. Nucleic Acids Res. 2009;37(Database issue):D767–D772. doi:10.1093/nar/gkn89218988627
  • Calderone A, Castagnoli L, Cesareni G. Mentha: a resource for browsing integrated protein-interaction networks. Nat Methods. 2013;10(8):690–691. doi:10.1038/nmeth.256123900247
  • Rostovtseva TK, Gurnev PA, Protchenko O, et al. α-synuclein shows high-affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem. 2015;290(30):18467–18477. doi:10.1074/jbc.M115.64174626055708
  • Lu L, Zhang C, Cai Q, et al. Voltage-dependent anion channel involved in the α-synuclein-induced dopaminergic neuron toxicity in rats. Acta Biochim Biophys Sin. 2013;45(3):170–178. doi:10.1093/abbs/gms11423291291
  • Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 2009;46(6):821–831. doi:10.1016/j.yjmcc.2009.02.02119265700
  • Beutner G, Rück A, Riede B, Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. The implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1998;1368(1):7–18.9459579
  • Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis. 2007;12(5):835–840. doi:10.1007/s10495-006-0525-717136322
  • Schinzel AC, Takeuchi O, Huang Z, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA. 2005;102(34):12005–12010. doi:10.1073/pnas.050529410216103352
  • Gincel D, Shoshan-Barmatz V. Glutamate interacts with VDAC and modulates the opening of the mitochondrial permeability transition pore. J Bioenerg Biomembr. 2004;36(2):179–186.15224967
  • McFarland MA, Ellis CE, Markey SP, Nussbaum RL. Proteomics analysis identifies phosphorylation-dependent α-synuclein protein interactions. Mol Cell Proteomics. 2008;7(11):2123–2137. doi:10.1074/mcp.M800116-MCP20018614564
  • Liani E, Eyal A, Avraham E, et al. Ubiquitylation of synphilin-1 and α-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc Natl Acad Sci. 2004;101(15):5500–5555. doi:10.1073/pnas.040108110115064394
  • Dashtipour K, Tafreshi A, Adler C, et al. Hypermethylation of synphilin-1, Α-synuclein-interacting protein (SNCAIP) gene in the cerebral cortex of patients with sporadic Parkinson’s disease. Brain Sci. 2017;7:7. doi:10.3390/brainsci7070074
  • Stafa K, Trancikova A, Webber PJ, Glauser L, West AB, Moore DJ. GTPase activity and neuronal toxicity of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. GTPase activity and neuronal toxicity of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet. 2012;8(2):e1002526. doi:10.1371/journal.pgen.100252622363216
  • Wu J, Lou H, Alerte TN, et al. Lewy-like aggregation of α-synuclein reduces protein phosphatase 2A activity in vitro and in vivo. Neuroscience. 2012;07:288–297. doi:10.1016/j.neuroscience.2012.01.028
  • Hua G, Xiaolei L, Weiwei Y, et al. Protein phosphatase 2A is involved in the tyrosine hydroxylase phosphorylation regulated by α-synuclein. Neurochem Res. 2015;40(3):428–437. doi:10.1007/s11064-014-1477-x25567480
  • Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG. α-Synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci. 2005;118(15):3523–3530. doi:10.1242/jcs.0248116030137
  • Lee FJ, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. Faseb J. 2001;15(6):916–926. doi:10.1096/fj.00-0334com11292651
  • Wersinger C, Sidhu A. Attenuation of dopamine transporter activity by α-synuclein. Neurosci Lett. 2003;340(3):189–192.12672538
  • Kawakami F, Yabata T, Ohta E, et al. LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS One. 2012;7(1):e30834. doi:10.1371/journal.pone.003083422303461
  • Ohi K, Hashimoto R, Yasuda Y, et al. The AKT1 gene is associated with attention and brain morphology in schizophrenia. World J Biol Psychiatry. 2013;14(2):100–113. doi:10.3109/15622975.2011.59182622150081
  • Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol. 2015;65:139–150. doi:10.1016/j.biocel.2015.05.02426028290
  • Van Den Eeden SK, Tanner CM, Bernstein AL, et al. The incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157(11):1015–1022. doi:10.1093/aje/kwg06812777365
  • Sham PC, MacLean CJ, Kendler KS. A typological model of schizophrenia based on age at onset, sex, and familial morbidity. Acta Psychiatr Scand. 1994;89(2):135–141.8178665
  • Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL. Harrisons Principles of Internal Medicine. 16th ed. London: Mcgraw Hill Medical Publishing Division; 2005.
  • Wilhelmus MM, Bol JG, Van Haastert ES, et al. Apolipoprotein E and LRP1 increase early in Parkinson’s disease pathogenesis. Am J Pathol. 2011;179(5):2152–2156. doi:10.1016/j.ajpath.2011.07.02121907175
  • Vance JE, Hayashi H. Formation and function of apolipoprotein E-containing lipoproteins in the nervous system. Biochim Biophys Acta. 2010;1801(8):806–818. doi:10.1016/j.bbalip.2010.02.00720170744
  • Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain. Cardiovasc Res. 2014;103(3):405–413. doi:10.1093/cvr/cvu14824907980
  • de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol. 2008;3(5):505–530.19649144
  • Iwai A. Properties of NACP/α-synuclein and its role in Alzheimer’s disease. Biochim Biophys Acta. 2000;1502(1):95–109.10899435
  • Marzolo MP, von Bernhardi R, Bu G, Inestrosa NC. Expression of alpha(2)-macroglobulin receptor/low-density lipoprotein receptor-related protein (LRP) in rat microglial cells. J Neurosci Res. 2000;60(3):401–411. doi:10.1002/(SICI)1097-4547(20000501)60:3<401::AID-JNR15>3.0.CO;2-L10797543
  • Lee HJ, Bae EJ, Lee SJ. Extracellular α–synuclein-a novel and the crucial factor in Lewy body diseases. Nat Rev Neurol. 2014;10(2):92–98. doi:10.1038/nrneurol.2013.27524468877
  • Danzer KM, Kranich LR, Ruf WP, et al. Exosomal cell-to-cell transmission of alpha-synuclein oligomers. Mol Neurodegener. 2012;24:7–42.
  • Dzamko N, Gysbers A, Perera G, et al. Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to α-synuclein pathology. Acta Neuropathological. 2017;133(2):303–319. doi:10.1007/s00401-016-1648-8
  • Holmes BB, DeVos SL, Kfoury N, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A. 2013;110(33):E3138. doi:10.1073/pnas.130144011023898162
  • Fantini J, Carlus D, Yahi N. The fusogenic tilted peptide (67–78) of α-synuclein is a cholesterol binding domain. Biochim Biophys Acta. 2011;1808(10):2343–2351. doi:10.1016/j.bbamem.2011.06.01721756873
  • Bar-On P, Crews L, Koob AO, et al. Statins reduce neuronal α-synuclein aggregation in vitro models of Parkinson’s disease. J Neurochem. 2008;105(5):1656–1667. doi:10.1111/j.1471-4159.2008.05254.x18248604
  • Emamzadeh FN, Allsop D. α-Synuclein interacts with lipoproteins in plasma. J Mol Neurosci. 2017b;63(2):165–172. doi:10.1007/s12031-017-0967-028887769
  • Emamzadeh FN. Role of apolipoproteins and α-synuclein in Parkinson’s disease. J Mol Neurosci. 2017a;62(3–4):344–355. doi:10.1007/s12031-017-0942-928695482
  • Gao N, Li YH, Li X, et al. Effect of α-synuclein on the promoter activity of the tyrosine hydroxylase gene. Neurosci Bull. 2007;23(1):53–57. doi:10.1007/s12264-007-0008-z17592526
  • Kastner A, Hirsch EC, Herrero MT, Javoy-Agid F, Agid Y. Immunocytochemical quantification of tyrosine hydroxylase at a cellular level in the mesencephalon of control subjects and patients with Parkinson’s and Alzheimer’s disease. J Neurochem. 1993;61(3):1024–1034.8103078
  • Peterson L, Ismond KP, Chapman E, Flood P. Potential benefits of the therapeutic use of β2-adrenergic receptor agonists in neuroprotection and Parkinson’s disease. J Immunol Res. 2014;2014:103780. doi:10.1155/2014/39412724741572
  • Mittal S, Bjørnevik K, Im DS, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving the risk of Parkinson’s disease. Science. 2017;357(6354):891–898. doi:10.1126/science.aaf393428860381
  • Hsiao JT, Halliday GM, Kim WS. α-synuclein regulates neuronal cholesterol efflux. Molecules. 2017;19(22):10.
  • Hirsch-Reinshagen V, Zhou S, Burgess BL, et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in the brain. J Biol Chem. 2004;279(39):41197–41207. doi:10.1074/jbc.M40796220015269218
  • Kamisuki S, Mao Q, Abu-Elheiga L, et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol. 2009;16(8):882–892. doi:10.1016/j.chembiol.2009.07.00719716478
  • Cheng D, Kim WS, Garner B. Regulation of α-synuclein expression by liver X receptor ligands in vitro. Neuroreport. 2008;19(17):1685–1689. doi:10.1097/WNR.0b013e32831578b218841091
  • Wheatley VR, Brind JL. Sebaceous gland differentiation: III. The uses and limitations of freshly isolated mouse preputial gland cells for the in vitro study of hormone and drug action. J Invest Dermatol. 1981;76(4):293–296.6162901
  • Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann N YAcad Sci. 2003;991(1):120–131. doi:10.1111/j.1749-6632.2003.tb07470.x
  • Bosco DA, Fowler DM, Zhang Q, et al. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate α-synuclein fibrilization. Nat Chem Biol. 2006;2(5):249–253. doi:10.1038/nchembio78216565714
  • Gallardo G, Schlüter OM, Südhof TC. A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides. Nature Neurosci. 2008;11(3):301. doi:10.1038/nn205818297066
  • Ruipérez V, Darios F, Davletov B. α-synuclein, lipids and Parkinson’s disease. Prog Lipid Res. 2010;49(4):420–428. doi:10.1016/j.plipres.2010.05.00420580911
  • Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci. 2006;103(15):5644–5651. doi:10.1073/pnas.060054910316567625
  • Chang S, Ran Ma T, Miranda RD, et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci. 2005;102(51):18694–18699. doi:10.1073/pnas.050825410216344479