154
Views
20
CrossRef citations to date
0
Altmetric
Review

The role of long noncoding RNA in traumatic brain injury

, , , , &
Pages 1671-1677 | Published online: 28 Jun 2019

References

  • Johnson Walter D, Griswold Dylan P. Traumatic brain injury: a global challenge.[J]. Lancet Neurol. 2017;16:949–950. doi:10.1016/S1474-4422(17)30362-9.
  • James SL, Theadom A, Ellenbogen RG, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:56–87. doi:10.1016/S1474-4422(18)30415-
  • Air M, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987–7048.29122524
  • Carbonara M, Fossi F, Zoerle T, et al. Neuroprotection in traumatic brain injury: mesenchymal stromal cells can potentially overcome some limitations of previous clinical trials. Front Neurol. 2018;9:885. doi:10.3389/fneur.2018.00885
  • Rana A, Singh S, Sharma R, Kumar A. Traumatic brain injury altered normal brain signaling pathways: implications for novel therapeutics approaches. Curr Neuropharmacol. 2018;16. doi:10.2174/1570159X16666180911121847
  • Dorsett CR, McGuire JL, DePasquale EAK, Gardner AE, Floyd CL, McCullumsmith RE. Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma. 2017;34:263–272. doi:10.1089/neu.2015.437327256113
  • Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science. 1989;244:798–800.2567056
  • Anthonymuthu TS, Kenny EM, Bayır H. Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res. 2016;1640:57–76. doi:10.1016/j.brainres.2016.02.00626872597
  • Simon DW, McGeachy M, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:171–191. doi:10.1038/nrneurol.2017.1328186177
  • Patel NA, Moss LD, Lee JY, et al. Long noncoding rna malat1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J Neuroinflammation. 2018;15:204. doi:10.1186/s12974-018-1220-730001722
  • Pan Y-B, Sun Z-L, Feng D-F. The role of microRNA in traumatic brain injury. Neuroscience. 2017;367:189–199. doi:10.1016/j.neuroscience.2017.10.04629113926
  • Di Pietro V, Ragusa M, Davies D, et al. MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury. J Neurotrauma. 2017;34:1948–1956. doi:10.1089/neu.2016.485728279125
  • Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208. doi:10.1038/ng.319225599403
  • Mattick JS. Non‐coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2:986–991. doi:10.1093/embo-reports/kve23011713189
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–874. doi:10.1038/nrg307422094949
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–159. doi:10.1038/nrg252119188922
  • Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease.%a batista pj. Cell. 2013;152:1298–1307. doi:10.1016/j.cell.2013.02.01223498938
  • Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651–669. doi:10.1534/genetics.112.14670423463798
  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–166. doi:10.1146/annurev-biochem-051410-09290222663078
  • Ng S-Y, Lin L, Soh S, Stanton LW. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 2013;29:461–468. doi:10.1016/j.tig.2013.03.00223562612
  • Lee DY, Moon J, Lee S-T, et al. Distinct expression of long non-coding RNAs in an Alzheimer’s disease model. J Alzheimers Dis. 2015;45:837–849. doi:10.3233/JAD-14291925624420
  • Kraus TFJ, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA. Altered long noncoding RNA expression precedes the course of Parkinson’s disease—a preliminary report. Mol Neurobiol. 2016;54:2869–2877. doi:10.1007/s12035-016-9854-x27021022
  • Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ. Long non-coding RNA MALAT1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci. 2017;37:1797. doi:10.1523/JNEUROSCI.3389-16.201728093478
  • Li H, Yuan X, Yan D, et al. Long non-coding RNA MALAT1 decreases the sensitivity of resistant glioblastoma cell lines to temozolomide. Cell Physiol Biochem. 2017;42:1192–1201. doi:10.1159/00047891728668966
  • Chen Y, Zhou J. lncRNAs: macromolecules with big roles in neurobiology and neurological diseases. Metab Brain Dis. 2017;32:281–291. doi:10.1007/s11011-017-9965-828161776
  • Zhong J, Jiang L, Cheng C, et al. Altered expression of long non-coding RNA and mRNA in mouse cortex after traumatic brain injury. Brain Res. 2016;1646:589–600.27380725
  • Wang CF, Zhao CC, Weng WJ, et al. Alteration in long non-coding RNA expression after traumatic brain injury in rats. J Neurotrauma. 2017;34:2100–2108. doi:10.1089/neu.2016.464228145813
  • Currie S, Saleem N, Straiton J, Macmullen-Price J, Warren DJ. Imaging assessment of traumatic brain injury. Postgrad Med J. 2016;92:41–50. doi:10.1136/postgradmedj-2014-13321126621823
  • Yang L-X, Yang L-K, Zhu J, Chen J-H, Wang Y-H, Xiong K. Expression signatures of long non-coding RNA and mRNA in human traumatic brain injury. Neural Regen Res. 2019;14:632. doi:10.4103/1673-5374.24746730632503
  • Chiu C-C, Liao Y-E, Yang L-Y, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;272:38–49. doi:10.1016/j.jneumeth.2016.06.01827382003
  • Lozano D, Gonzales-Portillo GS, Acosta S, et al. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat. 2015;11:97–106.25657582
  • Sun D, Yu Z, Fang X, et al. lncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 2017;18:1801. doi:10.15252/embr.20164366828808113
  • Ye Y, He X, Lu F, et al. A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS-and MPTP-induced neuroinflammation. Cell Death Dis. 2018;9:803. doi:10.1038/s41419-018-0821-530038357
  • Yu Y, Cao F, Ran Q, Wang F. Long non-coding RNA Gm4419 promotes trauma-induced astrocyte apoptosis by targeting tumor necrosis factor α. Biochem Biophys Res Commun. 2017;491: 478–485.28688761
  • Salvador E, Burek M, Förster CY. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Front Cell Neurosci. 2015;9:323. doi:10.3389/fncel.2015.0032326347611
  • Choi YK, Maki T, Mandeville ET, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335. doi:10.1038/nm.418827668935
  • Park E, Park K, Liu E, Jiang R, Zhang J, Baker AJ. Bone-marrow–derived endothelial progenitor cell treatment in a model of lateral fluid percussion injury in rats: evaluation of acute and subacute outcome measures. J Neurotrauma. 2017;34:2801–2811. doi:10.1089/neu.2016.456028335684
  • Yuan Y, Zheng Z. Geniposide protects PC-12 cells against oxygen and glucose deprivation-induced injury by up-regulation of long-noncoding RNA H19. Life Sci. 2019;216:17–182. doi:10.1016/j.lfs.2018.11.047
  • Liu J, Zheng X, Yin F, et al. Neurotrophic property of geniposide for inducing the neuronal differentiation of PC12 cells. Int J Dev Neurosci. 2006;24:419–424. doi:10.1016/j.ijdevneu.2006.08.00917045447
  • Chen Z, Chen X, Guo R, Meng J. Protective effects of lncRNA H19 silence against hypoxia-induced injury in PC-12 cells by regulating miR-28. Int J Biol Macromol. 2019;121:546–555. doi:10.1016/j.ijbiomac.2018.10.03330312698
  • Yang X, Zi X-H. lncRNA SNHG1 alleviates OGD induced injury in BMEC via miR-338/HIF-1α axis. Brain Res. 2019;1714:174–181. doi:10.1016/j.brainres.2018.11.003
  • Ibrahim AS, Elmasry K, Wan M, et al. A controlled impact of optic nerve as a new model of traumatic optic neuropathy in mouse. Invest Ophthalmol Vis Sci. 2018;59:5548–5557. doi:10.1167/iovs.18-2477330480743
  • Yao J, Wang XQ, Li YJ, et al. Long non‐coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling. EMBO Mol Med. 2016;8:e201505725.
  • Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F, Carrillo-Vico A. Oxidative stress in traumatic brain injury. Curr Med Chem. 2014;21:1201–1211.24350853
  • Miao X, Liang A. Knockdown of long noncoding RNA GAS5 attenuates H2O2‐induced damage in retinal ganglion cells through upregulating mir‐124: potential role in traumatic brain injury. J Cell Biochem. 2018;1–10. doi:10.1002/jcb.27560
  • Avallone KM, Smith ER, Ma S, et al. PTSD as a mediator in the relationship between post-concussive symptoms and pain among OEF/OIF/OND veterans. Mil Med. 2019;184:e118-e123. doi:10.1093/milmed/usy225
  • Hendrickson RC, Schindler AG, Pagulayan KF. Untangling PTSD and TBI: challenges and strategies in clinical care and research. Curr Neurol Neurosci Rep. 2018;18:106. doi:10.1007/s11910-018-0908-530406855
  • Liu Q, Ma J, Yu Z, Liu H, Chen C, Li W. Distinct hippocampal expression profiles of lncRNAs in rats exhibiting a PTSD-like syndrome. Mol Neurobiol. 2016;53:2161–2168. doi:10.1007/s12035-015-9180-825941075
  • El Bassit G, Patel RS, Carter G, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 cells. Endocrinology. 2016;158:183–195.
  • Hirose T, Virnicchi G, Tanigawa A, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell. 2014;25:169–183. doi:10.1091/mbc.E13-09-055824173718
  • Zhong J, Cheng C, Liu H, et al. Bexarotene protects against traumatic brain injury in mice partially through apolipoprotein E. Neuroscience. 2017;343:434–448. doi:10.1016/j.neuroscience.2016.05.03327235741
  • Zhong J, Li J, Huang Z, et al. The long non-coding RNA NEAT1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun. 2017;65:183–194.28483659
  • Dai X, Yi M, Wang D, Chen Y, Xu X. Changqin no. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in traumatic brain injury mice model. Biol Chem. 2019;400:753–763. doi:10.1515/hsz-2018-0340
  • Flygt J, Gumucio A, Ingelsson M, et al. Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol. 2016;75:503–515. doi:10.1093/jnen/nlw02527105664
  • Baracskay KL, Kidd GJ, Miller RH, Trapp BD. NG2‐positive cells generate A2B5‐positive oligodendrocyte precursor cells. Glia. 2007;55:1001–1010. doi:10.1002/glia.2051917503442
  • Ogawa S-I, Tokumoto Y, Miyake J, Nagamune T. Immunopanning selection of A2B5-positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes. Neurosci Lett. 2011;489:79–83. doi:10.1016/j.neulet.2010.11.07021134419
  • Lyu Q, Zhang Z-B, Fu S-J, Xiong L-L, Liu J, Wang T-H. Microarray expression profile of lncRNAs and mRNAs in rats with traumatic brain injury after A2B5+ cell transplantation. Cell Transplant. 2017;26:1622–1635. doi:10.1177/096368971772301429251113