81
Views
2
CrossRef citations to date
0
Altmetric
Original Research

The neuroprotective mechanism of 2-arachidonoylglycerol 2-AG against non-caspase-dependent apoptosis in mice hippocampal neurons following MCAO

, , , &
Pages 2417-2424 | Published online: 23 Aug 2019

References

  • Wang J, Li C, Chen T, et al. Nafamostat mesilate protects against acute cerebral ischemia via blood-brain barrier protection. Neuropharmacology. 2016;105:398–410. doi:10.1016/j.neuropharm.2016.02.00226861077
  • Qi Z, Liang J, Pan R, et al. Zinc contributes to acute cerebral ischemia-induced blood-brain barrier disruption. Neurobiol Dis. 2016;95:12–21. doi:10.1016/j.nbd.2016.07.00327388935
  • Schwammenthal Y, Tsabari R, Orion D, et al. Shifting perceptions of risk and reward: use of anticoagulation in patients with acute brain ischemia and atrial fibrillation: nine-year data from a National Acute Stroke Registry (National Acute Stroke Israeli Survey [NASIS]). Stroke. 2017;48(4):1092–1094. doi:10.1161/STROKEAHA.116.01577628258255
  • Brose SA, Golovko SA, Golovko MY. Brain 2-arachidonoylglycerol levels are dramatically and rapidly increased under acute ischemia-injury which is prevented by microwave irradiation. Lipids. 2016;51(4):487–495. doi:10.1007/s11745-016-4144-y27021494
  • Stanne TM, Aberg ND, Nilsson S, et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke. 2016;47(7):1943–1945. doi:10.1161/STROKEAHA.115.01238327301948
  • Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J Cell Biochem. 2016;117(8):1913–1925. doi:10.1002/jcb.2549026755433
  • Wolff S, Groseth A, Meyer B, et al. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells. J Gen Virol. 2016;97(4):855–866. doi:10.1099/jgv.0.00040326769540
  • Mahajan SD, Tutino VM, Redae Y, et al. C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus. Immunology. 2016;148(4):407–419. doi:10.1111/imm.1261927213693
  • De Leo A, Chen HS, Hu CCA, Lieberman PM, Flemington EK. Deregulation of KSHV latency conformation by ER-stress and caspase-dependent RAD21-cleavage. PLoS Pathog. 2017;13(8):e1006596. doi:10.1371/journal.ppat.100659628854249
  • Mwanza C, Chen Z, Zhang Q, Chen S, Wang W, Deng H. Simultaneous HPLC-APCI-MS/MS quantification of endogenous cannabinoids and glucocorticoids in hair. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1028:1–10. doi:10.1016/j.jchromb.2016.06.002
  • Papadogkonaki S, Theodorakis K, Thermos K. Endogenous and synthetic cannabinoids induce the downregulation of cannabinoid CB1 receptor in retina. Exp Eye Res. 2019;185:107694. doi:10.1016/j.exer.2019.10769431199905
  • Pacheco DDF, Romero TRL, Duarte IDG. Ketamine induces central antinociception mediated by endogenous cannabinoids and activation of CB1 receptors. Neurosci Lett. 2019;699:140–144. doi:10.1016/j.neulet.2019.01.05930716423
  • Leishman E, Cornett B, Spork K, Straiker A, Mackie K, Bradshaw HB. Broad impact of deleting endogenous cannabinoid hydrolyzing enzymes and the CB1 cannabinoid receptor on the endogenous cannabinoid-related lipidome in eight regions of the mouse brain. Pharmacol Res. 2016;110:159–172. doi:10.1016/j.phrs.2016.04.02027109320
  • Gachet MS, Gertsch J. Quantitative analysis of arachidonic acid, endocannabinoids, N-acylethanolamines and steroids in biological samples by LCMS/MS: fit to purpose. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1012–1013:215–221. doi:10.1016/j.jchromb.2015.11.013
  • Song HL, Zhang X, Wang WZ, et al. Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway. Neural Regen Res. 2018;13(1):128–134. doi:10.4103/1673-5374.21734929451217
  • Wang Y, Ren Q, Zhang X, Lu H, Chen J. Neuroprotective mechanisms of calycosin against focal cerebral ischemia and reperfusion injury in rats. Cell Physiol Biochem. 2018;45(2):537–546. doi:10.1159/00048703129402799
  • Chen SQ, Wang ZS, Ma YX, et al. Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules. 2018;23(3):512.
  • Moriyama M, Moriyama H, Uda J, Matsuyama A, Osawa M, Hayakawa T. BNIP3 plays crucial roles in the differentiation and maintenance of epidermal keratinocytes. J Invest Dermatol. 2014;134(6):1627–1635. doi:10.1038/jid.2014.1124402046
  • Liu J, Yuan C, Pu L, Wang J. Nutrient deprivation induces apoptosis of nucleus pulposus cells via activation of the BNIP3/AIF signalling pathway. Mol Med Rep. 2017;16(5):7253–7260. doi:10.3892/mmr.2017.755028944876
  • Xu W, Guo G, Li J, et al. Activation of Bcl-2-Caspase-9 apoptosis pathway in the testis of asthmatic mice. PLoS One. 2016;11(3):e0149353. doi:10.1371/journal.pone.014935326938720
  • Lee HJ, Jung YH, Choi GE, et al. BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol. 2017;13:426–443. doi:10.1016/j.redox.2017.07.00428704726
  • Kapoor R, Rizvi F, Kakkar P. Naringenin prevents high glucose-induced mitochondria-mediated apoptosis involving AIF, Endo-G and caspases. Apoptosis. 2013;18(1):9–27. doi:10.1007/s10495-012-0781-723192364