88
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Abnormal intrinsic functional activity in patients with cervical spondylotic myelopathy: a resting-state fMRI study

&
Pages 2371-2383 | Published online: 21 Aug 2019

References

  • Nicholas JH Sharp and Aimon J Wheeler. Chapter 7- Cervical disc disease- Small Animal Spine Disorders (ed2)Elsevier 2005: 93–120.
  • Yarbrough CK, Murphy RK, Ray WZ, et al. The natural history and clinical presentation of cervical spondylotic myelopathy. Adv Orthop. 2012;2012:480643. doi:10.1155/2012/48064322235378
  • Nardone R, Holler Y, Brigo F, et al. Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res. 2013;1504:58–73. doi:10.1016/j.brainres.2012.12.03423396112
  • Cui JL, Wen CY, Hu Y, et al. Entropy-based analysis for diffusion anisotropy mapping of healthy and myelopathic spinal cord. Neuroimage. 2011;54:2125–2131. doi:10.1016/j.neuroimage.2010.10.01820951216
  • Konomi T, Fujiyoshi K, Hikishima K, et al. Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: preclinical longitudinal study in common marmosets. Neuroimage. 2012;63:1841–1853. doi:10.1016/j.neuroimage.2012.06.03722922169
  • Wen CY, Cui JL, Liu HS, et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy? Radiology. 2014;270:197–204. doi:10.1148/radiol.1312188523942607
  • Holly LT, Dong Y, Albistegui-Dubois R, et al. Cortical reorganization in patients with cervical spondylotic myelopathy. J Neurosurg Spine. 2007;6:544–551. doi:10.3171/spi.2007.6.6.517561743
  • Jurkiewicz MT, Mikulis DJ, McIlroy WE, et al. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair. 2007;21:527–538. doi:10.1177/154596830730849817507643
  • Duggal N, Rabin D, Bartha R, et al. Brain reorganization in patients with spinal cord compression: a pre and post-surgical comparison using fMRI. Neurology. 2010;74:1048–1054. doi:10.1212/WNL.0b013e3181d6b0ea20200344
  • Kowalczyk I, Duggal N, Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain. 2012;135:461–468. doi:10.1093/brain/awr32822180462
  • Zhou F, Gong H, Liu X, et al. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy. PLoSOne. 2014;9:e104442. doi:10.1371/journal.pone.0104442
  • Tan Y, Zhou F, Wu L, et al. Alteration of regional homogeneity within the sensorimotor network after spinal cord decompression in cervical spondylotic myelopathy: a resting-state fMRI study. Biomed ResInt. v.2015; 2015;647958. doi:10.1155/2015/647958.
  • Zhou FQ, Tan YM, Wu L, et al. Intrinsic functional plasticity of the sensory-motor network in patients with cervical spondylotic myelopathy. Sci.Rep. 2015;5:9975. doi:10.1038/srep0997525897648
  • Zhou F, Wu L, Liu X, et al. Characterizing thalamocortical disturbances in cervical spondylotic myelopathy: revealed by functional connectivity under two slow frequency bands. PLoS One. 2015;10:e0125913. doi:10.1371/journal.pone.012591326053316
  • Holly LT. Management of cervical spondylotic myelopathy with insights from metabolic imaging of the spinal cord and brain. Curr Opin Neurol. 2009;22:575–581. doi:10.1097/WCO.0b013e3283325ea719741530
  • Dong Y, Holly LT, Albistegui-Dubois R, et al. Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy: laboratory investigation. J Neurosurg Spine. 2008;9:538–551. doi:10.3171/SPI.2008.10.083119035745
  • Nishimura Y, Isa T. Compensatory changes at the cerebral cortical level after spinal cord injury. Neuroscientist. 2009;15:436–444. doi:10.1177/107385840833137519826168
  • Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2001;2:263–273. doi:10.1038/3506757011283749
  • Biswal B, F Z Y, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541. doi:10.1002/mrm.19103404098524021
  • Kelly C, Biswal B, Craddock RC, et al. Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn Sci. 2012;16:181–188. doi:10.1016/j.tics.2012.02.00122341211
  • Chen Z, Wang Q, Liang M, et al. Visual cortex neural activity alteration in cervical spondylotic myelopathy patients: a resting-state fMRI study. Neuroradiology. 2018;60(9):921–932. doi:10.1007/s00234-018-2061-x30066277
  • Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol. 2013;34:1866–1872. doi:10.3174/ajnr.A326322936095
  • Mantini D, Perrucci MG, Del Gratta C, et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A. 2007;104:13170–13175. doi:10.1073/pnas.070066810417670949
  • Zang YF, He Y, Zhu CZ, et al. Altered base line brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91. doi:10.1016/j.braindev.2006.11.00916919409
  • Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22:394–400. doi:10.1016/j.neuroimage.2003.12.03015110032
  • Yonenobu K, Abumi K, Nagata K, et al. Interobserver and intra-observer reliability of the Japanese Orthopaedic Association scoring system for evaluation of cervical compression myelopathy. Spine. 2001;26:1890–1894. doi:10.1097/00007632-200109010-0001411568701
  • Yan CG, Wang XD, Zuo XN, et al. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14:339–351. doi:10.1007/s12021-016-9299-427075850
  • Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–141. doi:10.1089/brain.2012.007322642651
  • Maier MA, Armand J, Kirkwood PA, et al. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex. 2002;12:281–296. doi:10.1093/cercor/12.3.28111839602
  • Shallice T, Stuss DT, Picton TW, et al. Multiple effects of prefrontal lesions on task-switching. Front Hum Neurosci. 2007;1:2.18958216
  • Krieghoff V, Brass M, Prinz W, et al. Dissociating what and when of intentional actions. Front Hum Neurosci. 2009;3:3. doi:10.3389/neuro.09.003.200919277217
  • Chouinard PA, Paus T. What have we learned from “perturbing” the human cortical motor system with transcranial magnetic stimulation? Front Hum Neurosci. 2010;4:173. doi:10.3389/fnhum.2010.0017321060721
  • Zhang S, Jaime SI, Chiang-shan RL. Resting-state functional connectivity of the medial superior frontal cortex. Cereb Cortex. 2012;22:9–111. doi:10.1093/cercor/bhr088
  • Bhaqavatula ID, Shaukla D, Sadashiva N, et al. Functional cortical reorganization in case of cervical spondylotic myelophthy and changes associated with surgery. Neurosurg Focus. 2016;40(6):E2. doi:10.3171/2016.3.FOCUS1635
  • Zhang D, Raichle ME. Disease and the brain’s dark energy. Nat Rev Neurol. 2010;6:15–28. doi:10.1038/nrneurol.2009.19820057496
  • Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–1929. doi:10.1126/science.109974515218136
  • Mennemeier M. Inferior parietal lobule In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer; 2018:51–51. doi:10.1007/978-3-319-57111-9_1308.
  • Leichnetz GR. Supramarginal gyrus In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer; 2011:180–180. doi:10.1007/978-0-387-79948-3_369.
  • Mattingley JB, Husain M, Rorden C, Kennard C, Driver J. Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature. 1998;392:179–182. doi:10.1038/324139515962
  • Tam S, Barry RL, Bartha R, et al. Changes in functional magnetic resonance imaging cortical activation after decompression of cervical spondylosis: case report. Neurosurgery. 2010;67:E863–E864. doi:10.1227/01.NEU.0000374848.86299.1720657323
  • Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–9678. doi:10.1073/pnas.050413610215976020
  • Puri B, Smith H, Cox I, et al. The human motor cortex after incomplete spinal cord injury: an investigation using proton magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry. 1998;65:748–754. doi:10.1136/jnnp.65.5.7489810950
  • Picard N, Strick PL. Imaging the premotor areas. Curr Opin Neurobiol. 2001;11:663–672.11741015
  • Rushworth MF, Walton ME, Kennerley SW, et al. Action sets and decisions in the medial frontal cortex. Trends Cogn Sci. 2004;8:410–417. doi:10.1016/j.tics.2004.07.00915350242
  • Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci. 2008;9:856–869. doi:10.1038/nrn247818843271
  • Wang Z, Chen LM, Negyessy L, et al. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron. 2013;78:1116–1126. doi:10.1016/j.neuron.2013.04.02323791200
  • Blefari ML, Martuzzi R, Salomon R, et al. Bilateral Rolandic operculum processing underlying heartbeat awareness reflects changes in bodily self-consciousness. Eur J Neurosci. 2017;45(10):1300–1312. doi:10.1111/ejn.1356728370498
  • Wexler BE, Fulbright RK, Lacadie CM, et al. An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging. 1997;15:385–396. doi:10.1016/S0730-725X(96)00232-99223039
  • Dong Y, Dobkin BH, Cen SY, et al. Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke. 2006;37:1552–1555. doi:10.1161/01.STR.0000221281.69373.4e16645139
  • Reddy H, Floyer A, Donaghy M, et al. Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Exp Brain Res. 2001;138:484–491. doi:10.1007/s00221010073211465747
  • Rocca MA, Agosta F, Martinelli V, et al. The level of spinal cord involvement influences the pattern of movement-associated cortical recruitment in patients with isolated myelitis. Neuroimage. 2006;30:879–884. doi:10.1016/j.neuroimage.2005.10.01316307896
  • Frasnelli J, Collignon O, Voss P, et al. Crossmodal plasticity in sensory loss. Prog Brain Res. 2011;191:233–249.21741555
  • Guldin WO, Grüsser OJ. The anatomy of the vestibular cortices of primates In: Collard M, Jeannerod M, Christen Y, editors. Le Cortex Vestibulaire. Paris: Ipsen, Editions IRVINN; 1996:17–26.
  • Helmchen C, Ye Z, Sprenger A, et al. Changes in resting-state fMRI in vestibular neuritis. Brain Struct Funct. 2013;219:1889–1900. doi:10.1007/s00429-013-0608-523881293
  • Della-Justina HM, Gamba HR, Lukasova K, et al. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Exp Brain Res. 2014;233:237–252. doi:10.1007/s00221-014-4107-625300959
  • Gottlich M, Jandl NM, Wojak JF, et al. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure. Neuroimage Clin. 2014;4:488–499. doi:10.1016/j.nicl.2014.03.00324818075
  • Dieterich M, Bense S, Lutz S, et al. Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex. 2003;13:994–1007. doi:10.1093/cercor/13.9.99412902399
  • Gilissen E, Zilles K. The calcarine sulcus as an estimate of the total volume of human striate cortex: a morphometric study of reliability and intersubject variability. J Himforsch. 1996;37:57–66.
  • Kristjansson E, Treleaven J. Sensorimotor function and dizziness in neck pain: implications for assessment and management. J Orthop Sports Phys Ther. 2009;39:364–377. doi:10.2519/jospt.2009.283419411769
  • Treleaven J, Jull G, Sterling M. Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error. J Rehabil Med. 2003;35:36–43.12610847
  • Liu JX, Thornell LE, Pedrosa-Domellof F. Muscle spindles in the deep muscles of the human neck: a morphological and immunocytochemical study. J Histochem Cytochem. 2003;51:175–186. doi:10.1177/00221554030510020612533526
  • Richmond FJ, Bakker DA. Anatomical organization and sensory receptor content of soft tissues surrounding upper cervical vertebrae in the cat. J Neurophysiol. 1982;48:49–61. doi:10.1152/jn.1982.48.1.496214617
  • Edney DP, Porter JD. Neck muscle afferent projections to the brainstem of the monkey: implications for the neural control of gaze. J Comp Neurol. 1986;250:389–398. doi:10.1002/cne.9025003113745522
  • Fawcett JW, Curt A, Steeves JD, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. SpinalCord. 2007;45:190–205.