124
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Traditional Chinese Medicine Shenmayizhi Decoction Ameliorates Memory And Cognitive Impairment Induced By Scopolamine Via Preventing Hippocampal Cholinergic Dysfunction In Rats

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , , ORCID Icon, & ORCID Icon show all
Pages 3167-3176 | Published online: 12 Nov 2019

References

  • Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88(4):640–651. doi:10.1016/j.bcp.2013.12.02424398425
  • Takashi A, Pavla J, Jiri R, Machova UL, Eva S. Alzheimer’s disease: mechanism and approach to cell therapy. Int J Mol Sci. 2015;16(11):26417–26451. doi:10.3390/ijms16112596126556341
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, et al. Ribeiro, Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–115.26813123
  • Chu LW. Alzheimer’s disease: early diagnosis and treatment. Hong Kong Med J. 2012;18(3):228–237.22665688
  • Kim HG, Oh MS. Nutraceuticals and prevention of neurodegeneration herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr Pharm Des. 2012;18(1):57–75.22316321
  • Qiong W, Fang L, Jiangang L, et al. Effects of Shenmayizhi extration on cognitive function and hemorheological state in mild and moderate vascular dementia. Chin J Integr Med Cardio-/Cerebrovasc Dis. 2017;15(19):16–20.
  • Kun L. Shenmayizhi Prescription Alleviates Neurovascular Units Deficits in Vascular Dementia Rats. Beijing: CACMS; 2017.
  • Kun L, Pei H, Yu C, et al. Effects of Shenmayizhi prescription on morphology and oxidative stress of hippocampus in rats with vascular dementia. J Beijing Univ Tradit Chin Med. 2017;36(5):14–17, 98.
  • Haam J, Yakel JL. Cholinergic modulation of the hippocampal region and memory function. J Neurochem. 2017;142(Suppl 1):111–121. doi:10.1111/jnc.1405228791706
  • Lee B, Shim I, Lee H, Hahm DH. Rehmannia glutinosa ameliorates scopolamine-induced learning and memory impairment in rats. J Microbiol Biotechnol. 2011;21(8):874–883. doi:10.4014/jmb.1104.0401221876380
  • Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging. 2016;43(7):1376–1386. doi:10.1007/s00259-016-3349-x26984612
  • Carvajal FJ, Inestrosa NC. Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci. 2011;9(4):19.
  • Haley GE, Kroenke C, Schwartz D, Kohama SG, Urbanski HF, Raber J. Hippocampal M1 receptor function associated with spatial learning and memory in aged female rhesus macaques. Age. 2011;33(3):309–320. doi:10.1007/s11357-010-9184-220890730
  • Fisher A, Brandeis R, Bar-Ner RHN, et al. AF150(S) and AF267B - M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci. 2002;19(1–2):145–153. doi:10.1007/s12031-002-0025-312212772
  • Fisher A. M1 muscarinic agonists target major hallmarks of Alzheimer’s disease – the pivotal role of brain M1 receptors. Neurodegener Dis. 2008;5(3–4):237–240. doi:10.1159/00011371218322400
  • Caccamo A, Oddo S, Billings LM, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49(5):671–682. doi:10.1016/j.neuron.2006.01.02016504943
  • Medeiros R, Kitazawa M, Caccamo A, et al. Loss of muscarinic M1 receptor exacerbates Alzheimer\”s disease–like pathology and cognitive decline. Am J Pathol. 2011;179(2):980–991. doi:10.1016/j.ajpath.2011.04.04121704011
  • Hancianu M, Cioanca O, Mihasan M, Hritcu L. Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via anti-oxidative activities in rats. Phytomedicine. 2013;20(5):446–452. doi:10.1016/j.phymed.2012.12.00523351960
  • Hernández-Pérez JJ, Gutiérrez-Guzmán BE, López-Vázquez MÁ, Olvera-Cortés ME. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze. Front Pharmacol. 2015;10(6):250.
  • Fine A, Hoyle C, Maclean CJ, Levatte TL, Baker HF, Ridley RM. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience. 1997;81(2):331–343. doi:10.1016/s0306-4522(97)00208-x9300425
  • Miranda MI, Bermudez-Rattoni F. Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc Natl Acad Sci. 1999;96(11):6478–6482. doi:10.1073/pnas.96.11.647810339613
  • Abel T, Lattal KM. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol. 2001;11(2):180–187.11301237
  • Das A, Dikshit M, Singh HK, Nath C. Scopolamine and activite avoidance evaluation of effect of scopolamine on stages of active avoidance learning in rats. Indian J Pharmacol. 2003;35(1):47–50.
  • Wallenstein GV, Vago DR. Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiol Learn Mem. 2001;75(3):245–252. doi:10.1006/nlme.2001.400511300731
  • Agrawal R, Tyagi E, Saxena G, Nath C. Cholinergic influence on memory stages: a study on scopolamine amnesic mice. Indian J Pharmacol. 2009;41(4):192. doi:10.4103/0253-7613.5607220523872
  • Sandeep M, Hemant K, Duk-Yeon C, Yo-Sep Y, Dong-Kug C. Toxin-induced experimental models of learning and memory impairment. Int J Mol Sci. 2016;17(9):1447. doi:10.3390/ijms17091447
  • Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217(4558):408–417. doi:10.1126/science.70460517046051
  • Renner UD, Oertel R, Kirch W. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit. 2005;27(5):655–665. doi:10.1097/01.ftd.0000168293.48226.5716175141
  • Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34(8):1307–1350. doi:10.1016/j.neubiorev.2010.04.00120398692
  • Gibson BM, Mair R. A pathway for spatial memory encoding. Learn Behav. 2016;44(2):97–98. doi:10.3758/s13420-016-0214-526902364
  • Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp. 2011;(53):e2920.
  • Deb D, Nayak V, Kurady LB, Rao M. Ameliorative effects of angiotensin receptor blockers against scopolamine-induced memory impairment in rats. Asian J Pharm Clin Res. 2016;9(2):335–341.
  • Falsafi SK, Deli A, Höger H, Pollak A, Lubec G. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems. PLoS One. 2012;7(2):e32082. doi:10.1371/journal.pone.003208222384146
  • Wenwen L, Jiansong F, Lvjie X, et al. DL0410 ameliorates memory and cognitive impairments induced by scopolamine via increasing cholinergic neurotransmission in mice. Molecules. 2017;22(3):410. doi:10.3390/molecules22030410
  • Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci. 2014;15(11):732–744. doi:10.1038/nrn382725269553
  • Berger-Sweeney J, Stearns NA, Murg SL, Floerke-Nashner LR, Lappi D, Baxter MG. Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci. 2001;21(20):8164. doi:10.1523/JNEUROSCI.21-20-08164.200111588189
  • Blokland A, Honig W, Raaijmakers WG. Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in the rat. Psychopharmacology. 1992;109(3):373–376. doi:10.1007/BF022458861365638
  • Roloff EVL, Harbaran D, Micheau J, Platt B, Riedel G. Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience. 2007;146(3):875–889. doi:10.1016/j.neuroscience.2007.02.03817418958
  • Maurer SV, Williams CL. The cholinergic system modulates memory and hippocampal plasticity via Its interactions with non-neuronal cells. Front Immunol. 2017;11(8):1489. doi:10.3389/fimmu.2017.01489
  • Forlenza OV, Spink JM, Dayanandan R, Anderton BH, Olesen OF, Lovestone S. Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3β inhibition and in neurons. J Neural Transm. 2000;107(10):1201–1212. doi:10.1007/s00702007003411129110
  • Park YM, Lee BG, Park SH, et al. Prolonged oral administration of Gastrodia elata, extract improves spatial learning and memory of scopolamine-treated rats. Lab Anim Res. 2015;31(2):69–77. doi:10.5625/lar.2015.31.2.6926155201
  • Wang X, Li P, Liu J, et al. Gastrodin attenuates cognitive deficits induced by 3,3′-iminodipropionitrile. Neurochem Res. 2016;41(6):1401–1409. doi:10.1007/s11064-016-1845-926869041
  • Hu Y, Li C, Shen W. Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease. Neuropathology. 2015;34(4):370–377.
  • Liu B, Gao JM, Li F, Gong QH, Shi JS. Gastrodin attenuates bilateral common carotid artery occlusion-induced cognitive deficits via regulating Aβ-related proteins and reducing autophagy and apoptosis in rats. Front Pharmacol. 2018;4(9):405. doi:10.3389/fphar.2018.00405
  • Wang L, Wang H, Duan Z, Zhang J, Zhang W. Mechanism of gastrodin in cell apoptosis in rat hippocampus tissue induced by desflurane. Exp Ther Med. 2018;15(3):2767–2772.29541166
  • Yuan L, Jialiang G, Min P, et al. A review on central nervous system effects of gastrodin. Front Pharmacol. 2018;2(9):24.
  • Trivena RN, Sean KT, Kai-Chun C, et al. A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid Based Complement Alternat Med. 2016;(1):1–7.
  • Jakaria M, Haque ME, Kim J, et al. Active ginseng components in cognitive impairment: therapeutic potential and prospects for delivery and clinical study. Oncotarget. 2018;9(71):33601. doi:10.18632/oncotarget.2603530323902
  • Jiang Y, Gao H, Turdu G. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: a review. Bioorg Chem. 2017;9(75):50–61. doi:10.1016/j.bioorg.2017.09.004
  • Sgarbossa A, Giacomazza D, Di Carlo M. Ferulic acid: a hope for Alzheimer’s disease therapy from plants. Nutrients. 2015;7(7):5764–5782. doi:10.3390/nu707524626184304
  • Yan J, Cho J, Kim H, et al. Protection against β‐amyloid peptide toxicity in vivo with long‐term administration of ferulic acid. Br J Pharmacol. 2010;133(1):89–96. doi:10.1038/sj.bjp.0704047
  • Nagai N, Kotani S, Mano Y, et al. Ferulic acid suppresses amyloid β production in the human lens epithelial cell stimulated with hydrogen peroxide. Biomed Res Int. 2017;2017(3):1–9. doi:10.1155/2017/5343010
  • Ren Z, Zhang RP, Li YY, Yang ZY, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med. 2017;40(5):1444–1456. doi:10.3892/ijmm.2017.312728901374
  • Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer\”s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer\”s disease model mice. Neuropharmacology. 2015;6(93):134–145. doi:10.1016/j.neuropharm.2015.01.027
  • David AVA, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84–89. doi:10.4103/0973-7847.19404428082789
  • Pattanashetti LA, Taranalli AD, Parvatrao V, Malabade RH, Kumar D. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Indian J Pharmacol. 2017;49(1):60–64. doi:10.4103/0253-7613.20101628458424
  • Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev. 2016;2016(7):1–10.