114
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Effects of AQP4 and KCNJ10 Gene Polymorphisms on Drug Resistance and Seizure Susceptibility in Chinese Han Patients with Focal Epilepsy

, , , , , , & show all
Pages 119-129 | Published online: 09 Jan 2020

References

  • Yuen A, Keezer MR, Sander JW. Epilepsy is a neurological and a systemic disorder. Epilepsy Behav. 2018;78:57–61. doi:10.1016/j.yebeh.2017.10.01029175221
  • Xiong J, Mao D, Liu L. Research progress on the role of ABC transporters in the drug resistance mechanism of intractable epilepsy. Biomed Res Int. 2015;2015:1–10.
  • Peng J, Pang N, Wang Y, et al. Next-generation sequencing improves treatment efficacy and reduces hospitalization in children with drug-resistant epilepsy. CNS Neurosci Ther. 2019;25(1):14–20. doi:10.1111/cns.2019.25.issue-129933521
  • Liu Z, Yin X, Liu L, et al. Association of KEAP1 and NFE2L2 polymorphisms with temporal lobe epilepsy and drug resistant epilepsy. Gene. 2015;571(2):231–236. doi:10.1016/j.gene.2015.06.05526149655
  • Siddiqui A, Kerb R, Weale ME, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med. 2003;348(15):1442–1448. doi:10.1056/NEJMoa02198612686700
  • Ufer M, von Stulpnagel C, Muhle H, et al. Impact of ABCC2 genotype on antiepileptic drug response in Caucasian patients with childhood epilepsy. Pharmacogenet Genomics. 2011;21(10):624–630. doi:10.1097/FPC.0b013e328349813121799461
  • Qu J, Zhou BT, Yin JY, et al. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci Ther. 2012;18(8):647–651. doi:10.1111/j.1755-5949.2012.00336.x22630058
  • Qian L, Fang S, Yan Y, Zeng S, Xu Z, Gong Z. The ABCC2 c.-24C>T polymorphism increases the risk of resistance to antiepileptic drugs: a meta-analysis. J Clin Neurosci. 2017;37:6–14. doi:10.1016/j.jocn.2016.10.01427816260
  • Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy. Glia. 2012;60(8):1203–1214. doi:10.1002/glia.2231722378467
  • Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36(3):174–184. doi:10.1016/j.tins.2012.11.00823298414
  • Kinboshi M, Shimizu S, Mashimo T, et al. Down-regulation of astrocytic Kir4.1 channels during the audiogenic epileptogenesis in Leucine-Rich Glioma-Inactivated 1 (Lgi1) mutant rats. Int J Mol Sci. 2019;20(5):1013. doi:10.3390/ijms20051013
  • Das A, Wallace GT, Holmes C, et al. Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 2012;220:237–246. doi:10.1016/j.neuroscience.2012.06.00222698689
  • Heuser K, Eid T, Lauritzen F, et al. Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. J Neuropathol Exp Neurol. 2012;71(9):814–825. doi:10.1097/NEN.0b013e318267b5af22878665
  • Heuser K, Nagelhus EA, Tauboll E, et al. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res. 2010;88(1):55–64. doi:10.1016/j.eplepsyres.2009.09.02319864112
  • Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the international league against epilepsy: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58(4):522–530. doi:10.1111/epi.1367028276060
  • Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069–1077. doi:10.1111/j.1528-1167.2009.02397.x19889013
  • Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BMJ. 1995;310(6973):170. doi:10.1136/bmj.310.6973.1707833759
  • Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci. 2005;118(Pt 24):5691–5698. doi:10.1242/jcs.0268016303850
  • Pecorelli A, Natrella F, Belmonte G, et al. NADPH oxidase activation and 4-hydroxy-2-nonenal/aquaporin-4 adducts as possible new players in oxidative neuronal damage presents in drug-resistant epilepsy. Biochim Biophys Acta. 2015;1852(3):507–519. doi:10.1016/j.bbadis.2014.11.01625460197
  • Verkhratsky A, Rodriguez JJ, Parpura V. Astroglia in neurological diseases. Future Neurol. 2013;8(2):149–158. doi:10.2217/fnl.12.9023658503
  • Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull. 2018;136:118–129. doi:10.1016/j.brainresbull.2017.02.01128274814
  • Bebek N, Ozdemir O, Sayitoglu M, et al. Expression analysis and clinical correlation of aquaporin 1 and 4 genes in human hippocampal sclerosis. J Clin Neurosci. 2013;20(11):1564–1570. doi:10.1016/j.jocn.2012.12.02323928039
  • Hubbard JA, Szu JI, Yonan JM, Binder DK. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol. 2016;283(Pt A):85–96. doi:10.1016/j.expneurol.2016.05.00327155358
  • Short B, Kozek L, Harmsen H, et al. Cerebral aquaporin-4 expression is independent of seizures in tuberous sclerosis complex. Neurobiol Dis. 2019;129:93–101. doi:10.1016/j.nbd.2019.05.00331078684
  • Nagelhus EA, Mathiisen TM, Ottersen OP. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience. 2004;129(4):905–913. doi:10.1016/j.neuroscience.2004.08.05315561407
  • Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci. 2007;27(42):11354–11365. doi:10.1523/JNEUROSCI.0723-07.200717942730
  • Ohno Y, Kinboshi M, Shimizu S. Inwardly rectifying potassium channel Kir4.1 as a novel modulator of BDNF expression in astrocytes. Int J Mol Sci. 2018;19(11):3313. doi:10.3390/ijms19113313
  • Lenzen KP, Heils A, Lorenz S, et al. Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Res. 2005;63(2–3):113–118. doi:10.1016/j.eplepsyres.2005.01.00215725393
  • Dai AI, Akcali A, Koska S, Oztuzcu S, Cengiz B, Demiryurek AT. Contribution of KCNJ10 gene polymorphisms in childhood epilepsy. J Child Neurol. 2015;30(3):296–300. doi:10.1177/088307381453956025008907
  • Guo Y, Yan KP, Qu Q, et al. Common variants of KCNJ10 are associated with susceptibility and anti-epileptic drug resistance in Chinese genetic generalized epilepsies. PLoS ONE. 2015;10(4):e124896.
  • Mathieu O, Bouche N. Interplay between chromatin and RNA processing. Curr Opin Plant Biol. 2014;18:60–65. doi:10.1016/j.pbi.2014.02.00624631845