105
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Commensal Microbiota Regulation of Metabolic Networks During Olfactory Dysfunction in Mice

, , , , , , , , , , , , & show all
Pages 761-769 | Published online: 19 Mar 2020

References

  • Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. Characterizing functional pathways of the human olfactory system. Elife. 2019;8.
  • Mori K, Takahashi YK, Igarashi KM, Yamaguchi M. Maps of odorant molecular features in the Mammalian olfactory bulb. Physiol Rev. 2006;86(2):409–433. doi:10.1152/physrev.00021.200516601265
  • Buschhuter D, Smitka M, Puschmann S, et al. Correlation between olfactory bulb volume and olfactory function. Neuroimage. 2008;42(2):498–502. doi:10.1016/j.neuroimage.2008.05.00418555701
  • Mueller A, Rodewald A, Reden J, Gerber J, von Kummer R, Hummel T. Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport. 2005;16(5):475–478. doi:10.1097/00001756-200504040-0001115770154
  • Negoias S, Croy I, Gerber J, et al. Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience. 2010;169(1):415–421. doi:10.1016/j.neuroscience.2010.05.01220472036
  • Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014;127(4):459–475. doi:10.1007/s00401-014-1261-724554308
  • Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8(6):329–339. doi:10.1038/nrneurol.2012.8022584158
  • Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nat Rev Neurol. 2019;15(1):11–24. doi:10.1038/s41582-018-0097-530532084
  • Yang D, Liu X, Zhang R, et al. Increased apoptosis and different regulation of pro-apoptosis protein bax and anti-apoptosis protein bcl-2 in the olfactory bulb of a rat model of depression. Neurosci Lett. 2011;504(1):18–22. doi:10.1016/j.neulet.2011.08.04621903151
  • Yang D, Li Q, Fang L, et al. Reduced neurogenesis and pre-synaptic dysfunction in the olfactory bulb of a rat model of depression. Neuroscience. 2011;192:609–618. doi:10.1016/j.neuroscience.2011.06.04321722712
  • Cheng K, Li J, Yang D, et al. 2D-gel based proteomics unravels neurogenesis and energetic metabolism dysfunction of the olfactory bulb in CUMS rat model. Behav Brain Res. 2016;313:302–309. doi:10.1016/j.bbr.2016.05.02627340088
  • Huang C, Yang X, Zeng B, et al. Proteomic analysis of olfactory bulb suggests CACNA1E as a promoter of CREB signaling in microbiota-induced depression. J Proteomics. 2019;194:132–147. doi:10.1016/j.jprot.2018.11.02330521978
  • Carthey AJR, Gillings MR, Blumstein DT. The extended genotype: microbially mediated olfactory communication. Trends Ecol Evol. 2018;33(11):885–894. doi:10.1016/j.tree.2018.08.01030224089
  • Koskinen K, Reichert JL, Hoier S, et al. The nasal microbiome mirrors and potentially shapes olfactory function. Sci Rep. 2018;8(1):1296. doi:10.1038/s41598-018-19438-329358754
  • Grover M, Kashyap PC. Germ-free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil. 2014;26(6):745–748. doi:10.1111/nmo.2014.26.issue-624860967
  • Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786–796. doi:10.1038/mp.2016.4427067014
  • Zeng L, Zeng B, Wang H, et al. Microbiota modulates behavior and protein kinase C mediated cAMP response element-binding protein signaling. Sci Rep. 2016;6(1):29998. doi:10.1038/srep2999827444685
  • Luo Y, Zeng B, Zeng L, et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl Psychiatry. 2018;8(1):187. doi:10.1038/s41398-018-0240-530194287
  • Huo R, Zeng B, Zeng L, et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis. Front Cell Infect Microbiol. 2017;7:489. doi:10.3389/fcimb.2017.0048929250490
  • Chen JJ, Zeng BH, Li WW, et al. Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice. Behav Brain Res. 2017;322(Pt A):34–41. doi:10.1016/j.bbr.2017.01.02128093256
  • François A, Grebert D, Rhimi M, et al. Olfactory epithelium changes in germfree mice. Sci Rep. 2016;6:24687. doi:10.1038/srep2468727089944
  • Zeng B, Li G, Yuan J, Li W, Tang H, Wei H. Effects of age and strain on the microbiota colonization in an infant human flora-associated mouse model. Curr Microbiol. 2013;67(3):313–321. doi:10.1007/s00284-013-0360-323604540
  • Yuan J, Zeng B, Niu R, et al. The development and stability of the genus Bacteriodes from human gut microbiota in HFA mice model. Curr Microbiol. 2011;62(4):1107–1112. doi:10.1007/s00284-010-9833-921132498
  • Bianchi P, Bettini S, Guidi S, et al. Age-related impairment of olfactory bulb neurogenesis in the Ts65Dn mouse model of Down syndrome. Exp Neurol. 2014;251:1–11. doi:10.1016/j.expneurol.2013.10.01824192151
  • Gao X, Li N, Zhang J. SB203580, a p38MAPK inhibitor, attenuates olfactory dysfunction by inhibiting OSN apoptosis in AR mice (activation and involvement of the p38 mitogen-activated protein kinase in olfactory sensory neuronal apoptosis of OVA-induced allergic rhinitis). Brain Behav. 2019;9(6):e01295. doi:10.1002/brb3.129531041850
  • Nathan BP, Yost J, Litherland MT, Struble RG, Switzer PV. Olfactory function in apoE knockout mice. Behav Brain Res. 2004;150(1–2):1–7. doi:10.1016/S0166-4328(03)00219-515033273
  • Liu L, Zhou X, Zhang Y, et al. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behav Brain Res. 2016;305:148–156. doi:10.1016/j.bbr.2016.03.00526947756
  • Liu L, Zhou X, Zhang Y, et al. Hippocampal metabolic differences implicate distinctions between physical and psychological stress in four rat models of depression. Transl Psychiatry. 2018;8(1):4. doi:10.1038/s41398-017-0018-129317595
  • Chong J, Soufan O, Li C, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–w494. doi:10.1093/nar/gky31029762782
  • Smitka M, Puschmann S, Buschhueter D, et al. Is there a correlation between hippocampus and amygdala volume and olfactory function in healthy subjects? Neuroimage. 2012;59(2):1052–1057. doi:10.1016/j.neuroimage.2011.09.02421967725
  • Stilling RM, Ryan FJ, Hoban AE, et al. Microbes & neurodevelopment–absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun. 2015;50:209–220. doi:10.1016/j.bbi.2015.07.00926184083
  • Pearson-leary J, Zhao C, Bittinger K, et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry. 2019. doi:10.1038/s41380-019-0380-x
  • Watanabe K, Umezu K, Kurahashi T. Human olfactory contrast changes during the menstrual cycle. Jpn J Physiol. 2002;52(4):353–359. doi:10.2170/jjphysiol.52.35312519470
  • Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990;4(14):3224–3233. doi:10.1096/fsb2.v4.142227213
  • Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010;102(13):932–941. doi:10.1093/jnci/djq18720513808
  • Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–1238. doi:10.1210/me.2014-110824892638
  • Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mamm Genome. 2014;25(1–2):49–74. doi:10.1007/s00335-013-9488-524281320
  • Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–133. doi:10.1016/j.brainres.2018.03.01529903615
  • Wajner M, Kölker S, Souza DO, Hoffmann GF, de Mello CF. Modulation of glutamatergic and GABAergic neurotransmission in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 2004;27(6):825–828. doi:10.1023/B:BOLI.0000045765.37043.fb15505388
  • Skelin I, Sato H, Diksic M. Olfactory bulbectomy reduces cerebral glucose utilization: 2-[14C]deoxyglucose autoradiographic study. Brain Res Bull. 2008;76(5):485–492. doi:10.1016/j.brainresbull.2008.01.02018534256
  • Gross JA, Turecki G. Suicide and the polyamine system. CNS Neurol Disord Drug Targets. 2013;12(7):980–988. doi:10.2174/1871527311312999009524040803
  • Yao JK, Dougherty GG, Reddy RD, Matson WR, Kaddurah-daouk R, Keshavan MS. Associations between purine metabolites and monoamine neurotransmitters in first-episode psychosis. Front Cell Neurosci. 2013;7:90. doi:10.3389/fncel.2013.0009023781173
  • Grunebaum E, Zhang J, Roifman CM. Novel mutations and hot-spots in patients with purine nucleoside phosphorylase deficiency. Nucleosides Nucleotides Nucleic Acids. 2004;23(8–9):1411–1415. doi:10.1081/NCN-20002764715571269
  • Colgan SP, Eltzschig HK, Eckle T, Thompson LF. Physiological roles for ecto-5ʹ-nucleotidase (CD73). Purinergic Signal. 2006;2(2):351–360. doi:10.1007/s11302-005-5302-518404475
  • Crane JK. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Gut Microbes. 2013;4(5):388–391. doi:10.4161/gmic.2558423811846
  • Guo Z, Zhang J, Wang Z, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep. 2016;6:20602. doi:10.1038/srep2060226852926
  • Rodrigues SD, Batista GB, Ingberman M, Pecoits-filho R, Nakao LS. Plasma cysteine/cystine reduction potential correlates with plasma creatinine levels in chronic kidney disease. Blood Purif. 2012;34(3–4):231–237. doi:10.1159/00034262723147870