316
Views
16
CrossRef citations to date
0
Altmetric
Review

MicroRNA-Based Biomarkers in the Diagnosis and Monitoring of Therapeutic Response in Patients with Depression

, , , &
Pages 3583-3597 | Published online: 27 Dec 2019

References

  • World Health Organization. Depression. 3 22, 2018 Available from: https://www.who.int/news-room/fact-sheets/detail/depression. Accessed 1130, 2019..
  • Beekman ATF, Spijker J. Personalised diagnosis and treatment of depression. Tijdschr Psychiatr. 2018;60(3):156–160.29521402
  • Xu T, Fang Y, Rong A, et al. Flexible combination of multiple diagnostic biomarkers to improve diagnostic accuracy. BMC Med Res Methodol. 2015;15:94. doi:10.1186/s12874-015-0085-z26521228
  • Strawbridge R, Young AH, Cleare AJ. Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat. 2017;13:1245–1262. doi:10.2147/NDT.S11454228546750
  • Bartel DP. MicroRNAs. Cell. 2004;116(2):0–297. doi:10.1016/S0092-8674(04)00045-5
  • Cao DD, Lu L, Chan WY. MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci. 2016;17(6):842. doi:10.3390/ijms17060842
  • Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia. 2018;(12). doi:10.1002/glia.23445
  • Zhang Y, Zhang D, Wang F, et al. Serum miRNAs panel (miR-16-2*, miR-195, miR-2861, miR-497) as novel non-invasive biomarkers for detection of cervical cancer. Sci Rep. 2015;5:17942. doi:10.1038/srep1794226656154
  • Sundarbose K, Kartha RV, Subramanian S. MicroRNAs as biomarkers in cancer. Diagnostics. 2013;3(1):84–104. doi:10.3390/diagnostics301008426835669
  • Salehi M, Mohammadreza SPD. Exosomal miRNAs as novel cancer biomarkers: challenges and opportunities. J Cell Physiol. 2018;233(1):6370–6380. doi:10.1002/jcp.2648129323722
  • Wang S, Wang JQ, Lv XW. Exosomal miRNAs as biomarkers in the diagnosis of liver disease. Biomark Med. 2017;11(6):491–501. doi:10.2217/bmm-2017-001128598214
  • Tavakolizadeh J, Roshanaei K, Salmaninejad A, et al. MicroRNAs and exosomes in depression: potential diagnostic biomarkers. J Cell Biochem. 2017;119(5):3783–3797.
  • Maffioletti E, Tardito D, Gennarelli M, et al. Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci. 2014;8(8):75. doi:10.3389/fncel.2014.0007524653674
  • Pan B, Liu Y. Effects of duloxetine on microRNA expression profile in frontal lobe and hippocampus in a mouse model of depression. Int J Clin Exp Pathol. 2015;8(11):15454–15461.26823914
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518. doi:10.1073/pnas.080454910518663219
  • Wang X, Sundquist K, Hedelius A, et al. Circulating microRNA-144-5p is associated with depressive disorders. Clin Epigenetics. 2015;7:69. doi:10.1186/s13148-015-0099-826199675
  • Issler O, Haramati S, Paul E, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83(2):344–360. doi:10.1016/j.neuron.2014.05.04224952960
  • Lopez JP, Lim R, Cruceanu C, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med. 2014;20(7):764–768. doi:10.1038/nm.358224908571
  • Dwivedi Y. microRNA-124: a putative therapeutic target and biomarker for major depression. Expert Opin Ther Targets. 2017;21(7):653–656. doi:10.1080/14728222.2017.132850128490207
  • Roy B, Dunbar M, Shelton RC, et al. Identification of MicroRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology. 2017;42(4):864–875. doi:10.1038/npp.2016.17527577603
  • Kuang W-H, Dong Z-Q, Tian L-T, et al. MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Braz J Med Biol Res. 2018;51(7):e7212. doi:10.1590/1414-431x2018721229791588
  • Li Y-J, Xu M, Gao Z-H, et al. Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One. 2013;8(5):e63648. doi:10.1371/journal.pone.006364823704927
  • Camkurt MA, Acar Ş, Coşkun S, et al. Comparison of plasma MicroRNA levels in drug naive, first episode depressed patients and healthy controls. J Psychiatr Res. 2015;69:67–71. doi:10.1016/j.jpsychires.2015.07.02326343596
  • Sun N, Lei L, Wang Y, et al. Preliminary comparison of plasma notch-associated microRNA-34b and −34c levels in drug naive, first episode depressed patients and healthy controls. J Affect Disord. 2016;194:109–114. doi:10.1016/j.jad.2016.01.01726807671
  • Fan H-M, Sun X-Y, Niu W, et al. Altered microRNA expression in peripheral blood mononuclear cells from young patients with schizophrenia. J Mol Neurosci. 2015;56(3):562–571. doi:10.1007/s12031-015-0503-z25665552
  • Fisar Z, Raboch J. Depression, antidepressants, and peripheral blood components. Neuro Endocrinol Lett. 2008;29(1):17–28.18283265
  • Lai C-Y, Yu S-L, Hsieh MH, et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One. 2011;6(6):e21635. doi:10.1371/journal.pone.002163521738743
  • Gladkevich A, Kauffman HF, Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(3):559–576. doi:10.1016/j.pnpbp.2004.01.00915093964
  • Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8(1):166. doi:10.1186/1471-2164-8-16617565689
  • Belzeaux R, Bergon A, Jeanjean V, et al. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry. 2012;2:e185. doi:10.1038/tp.2012.11223149449
  • He S, Liu X, Jiang K, et al. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J Psychiatr Res. 2016;78:65–71. doi:10.1016/j.jpsychires.2016.03.01527078210
  • Fan H-M, Sun X-Y, Guo W, et al. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J Psychiatr Res. 2014;59:45–52. doi:10.1016/j.jpsychires.2014.08.00725201637
  • Wan Y, Liu Y, Wang X, et al. Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS One. 2015;10(3):e0121975. doi:10.1371/journal.pone.012197525763923
  • Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors. 2012;12(3):3359–3369. doi:10.3390/s12030335922737013
  • Xu YY, Ge JF, Liang J, et al. Nesfatin-1 and cortisol: potential novel diagnostic biomarkers in moderate and severe depressive disorder. Psychol Res Behav Manag. 2018;11:495–502. doi:10.2147/PRBM.S18312630425596
  • Garbett KA, Vereczkei A, Kálmán S, et al. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol Psychiatry. 2015;77(3):256–265. doi:10.1016/j.biopsych.2014.05.01525016317
  • Kálmán S, Garbett KA, Vereczkei A, et al. Metabolic stress-induced microRNA and mRNA expression profiles of human fibroblasts. Exp Cell Res. 2014;320(2):343–353. doi:10.1016/j.yexcr.2013.10.01924246224
  • Manier DH, Shelton RC, Ellis TC, et al. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord. 2000;61(1):51–58.11099740
  • Gibson SA, Korade Ž, Shelton RC, et al. Oxidative stress and glutathione response in tissue cultures from persons with major depression. J Psychiatr Res. 2012;46(10):1326–1332. doi:10.1016/j.jpsychires.2012.06.00822841833
  • Gallego JA, Gordon ML, Claycomb K, et al. In vivo microRNA detection and quantitation in cerebrospinal fluid. J Mol Neurosci Mn. 2012;47(2):243–248. doi:10.1007/s12031-012-9731-722402993
  • Mckeever PM, Schneider R, Taghdiri F, et al. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease. Mol Neurobiol. 2018;55(12):8826–8841. doi:10.1007/s12035-018-1032-x29603092
  • Akers JC, Hua W, Li H, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017;8(40):68769–68779. doi:10.18632/oncotarget.v8i4028978155
  • Song M-F, Dong J-Z, Wang Y-W, et al. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord. 2015;178:25–31. doi:10.1016/j.jad.2015.02.02225779937
  • Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci Jpn. 2004;29(6):417–426.15644983
  • Masi G, Brovedani P. The hippocampus, neurotrophic factors and depression. CNS Drugs. 2011;25(11):913–931. doi:10.2165/11595900-000000000-0000022054117
  • Trost W, Frã¼Hholz S. The hippocampus is an integral part of the temporal limbic system during emotional processing: comment on “The quartet theory of human emotions: an integrative and neurofunctional model” by S. Koelsch et al. Phys Life Rev. 2015;13:87–88. doi:10.1016/j.plrev.2015.04.01225911254
  • Mcgowan D. Neuroendocrinology: hormonal hippocampus. Nat Rev Neurosci. 2006;7(7):329. doi:10.1038/nrn1917
  • Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453–462. doi:10.1038/nrn84912042880
  • Sahay A, Hen R. Hippocampal neurogenesis and depression. Novartis Found Symp. 2008;289:152.18497101
  • Yau Y, Lau BW-M, Tong J-B, et al. Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats. PLoS One. 2011;6(9):e24263. doi:10.1371/journal.pone.002426321935393
  • O’Connor RM, Grenham S, Dinan TG, et al. microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol. 2013;16(8):1885–1892. doi:10.1017/S146114571300044823684180
  • Bao AM, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev. 2008;57(2):531–553. doi:10.1016/j.brainresrev.2007.04.00517524488
  • Yang J, Zhang L, Cao -L-L, et al. MicroRNA-99a is a potential target for regulating hypothalamic synaptic plasticity in the peri/postmenopausal depression model. Cells. 2019;8(9):1081. doi:10.3390/cells8091081
  • Hastings RS, Parsey RV, Oquendo MA, et al. Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology. 2004;29(5):952–959. doi:10.1038/sj.npp.130037114997169
  • Sibille E, Arango V, Galfalvy HC, et al. Gene expression profiling of depression and suicide in human prefrontal cortex. Neuropsychopharmacology. 2004;29(2):351–361. doi:10.1038/sj.npp.130033514603265
  • Smalheiser NR, Lugli G, Rizavi HS, et al. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One. 2012;7(3):e33201. doi:10.1371/journal.pone.003320122427989
  • Serafini G, Pompili M, Hansen KF, et al. The involvement of MicroRNAs in major depression, suicidal behavior, and related disorders: a focus on miR-185 and miR-491-3p. Cell Mol Neurobiol. 2014;34(1):17–30. doi:10.1007/s10571-013-9997-524213247
  • Lopez JP, Fiori LM, Gross JA, et al. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int J Neuropsychopharmacol. 2014;17(1):23–32. doi:10.1017/S146114571300094124025154
  • Gorinski N, Bijata M, Prasad S, et al. Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat Commun. 2019;10(1):3924. doi:10.1038/s41467-019-11876-531477731
  • Bai Y, Song L, Dai G, et al. Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids. 2018;135:73–78.29555480
  • Dwivedi Y, Roy B, Lugli G, et al. Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry. 2015;5:e682. doi:10.1038/tp.2015.17526575223
  • Xu -Y-Y, Ge J-F, Qin G, et al. Acute, but not chronic, stress increased the plasma concentration and hypothalamic mRNA expression of NUCB2/nesfatin-1 in rats. Neuropeptides. 2015;54:47–53. doi:10.1016/j.npep.2015.08.00326297350
  • Gu Z, Pan J, Chen L. MiR-124 suppression in the prefrontal cortex reduces depression-like behavior in mice. Biosci Rep. 2019;39(9). doi:10.1042/BSR20190186
  • Doan L, Manders T, Wang J. Neuroplasticity underlying the comorbidity of pain and depression. Neural Plast. 2015;2015:504691. doi:10.1155/2015/50469125810926
  • Satyanarayanan SK, Shih Y-H, Wen Y-R, et al. miR-200a-3p modulates gene expression in comorbid pain and depression: molecular implication for central sensitization. Brain Behav Immun. 2019;82:230–238. doi:10.1016/j.bbi.2019.08.19031479730
  • Cao M-Q, Chen D-H, Zhang C-H, et al. Screening of specific microRNA in hippocampus of depression model rats and intervention effect of Chaihu Shugan San. Zhongguo Zhong Yao Za Zhi. 2013;38(10):1585–1589.23947143
  • Gheysarzadeh A, Sadeghifard N, Afraidooni L, et al. Serum-based microRNA biomarkers for major depression: miR-16, miR-135a, and miR-1202. J Res Med Sci. 2018;23:69. doi:10.4103/jrms.JRMS_879_1730181751
  • Bai M, Zhu X, Zhang Y, et al. Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS One. 2012;7(10):e46921. doi:10.1371/journal.pone.004692123056528
  • Chin-Chuen Lin C-TL, Sun M-H, Huang T-L. Increased levels of miR-30e, miR-132, miR-185, and miR212 at baseline and increased brain-derived neurotrophic factor protein and mRNA levels after treatment in patients with major depressive disorder. Neuropsychiatry. 2017;7(6):920–926.
  • Liang HB, He J-R, Tu X-Q, et al. MicroRNA-140-5p: a novel circulating biomarker for early warning of late-onset post-stroke depression. J Psychiatr Res. 2019;115:129–141. doi:10.1016/j.jpsychires.2019.05.01831129437
  • Torres-Berrío A, Lopez JP, Bagot RC, et al. DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218. Biol Psychiatry. 2016;81(4):306. doi:10.1016/j.biopsych.2016.08.01727773352
  • Schmidt U, Herrmann L, Hagl K, et al. Therapeutic action of fluoxetine is associated with a reduction in prefrontal cortical miR-1971 expression levels in a mouse model of posttraumatic stress disorder. Front Psychiatry. 2013;4:66. doi:10.3389/fpsyt.2013.0006623847554
  • Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology. 2011;36(12):2375–2394. doi:10.1038/npp.2011.15121814182
  • Belzeaux R, Lin R, Turecki G. Potential use of MicroRNA for monitoring therapeutic response to antidepressants. CNS Drugs. 2017;31(4):253–262. doi:10.1007/s40263-017-0418-z28290081
  • Cully M. Mood disorders: microRNA in depression and treatment response. Nat Rev Drug Discovery. 2014;13(8):576.25082284
  • Gitlin M. Selective Serotonin Reuptake Inhibitors (SSRIs). Encycl Stress. 2007;44(3):440–443.
  • Baudry A, Mouillet-Richard S, Schneider B, et al. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329(5998):1537–1541. doi:10.1126/science.119369220847275
  • Vasu MM, Anitha A, Takahashi T, et al. Fluoxetine increases the expression of miR-572 and miR-663a in human neuroblastoma cell lines. PLoS One. 2016;11(10):e0164425. doi:10.1371/journal.pone.016442527716787
  • Fang Y, Qiu Q, Zhang S, et al. Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J Affect Disord. 2016;6:745–751. doi:10.1016/j.jad.2017.11.090
  • Emslie GJ, Ventura D, Korotzer A, et al. Escitalopram in the treatment of adolescent depression: a randomized placebo-controlled multisite trial. J Am Acad Child Adolesc Psychiatry. 2009;48(7):721–729. doi:10.1097/CHI.0b013e3181a2b30419465881
  • Zhong H, Haddjeri N, Sánchez C. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter–a review of current understanding of its mechanism of action. Psychopharmacology. 2012;219(1):1–13. doi:10.1007/s00213-011-2463-521901317
  • Zhang Y, Wang Y, Wang L, et al. Dopamine receptor D2 and associated microRNAs are involved in stress susceptibility and resistance to escitalopram treatment. Int J Neuropsychopharmacol. 2015;18(8):pyv025–pyv025. doi:10.1093/ijnp/pyv02525740916
  • Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, et al. Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol. 2013;23(7):602–611. doi:10.1016/j.euroneuro.2012.06.01322925464
  • Mertens C, Pintens H. Paroxetine in the treatment of depression. A double-blind multicenter study versus mianserin. Acta Psychiatr Scand. 2010;77(6):683–688. doi:10.1111/j.1600-0447.1988.tb05188.x
  • Angelucci F, Croce N, Spalletta G, et al. Paroxetine rapidly modulates the expression of brain-derived neurotrophic factor mrna and protein in a human glioblastoma-astrocytoma cell line. Pharmacology. 2011;87(1–2):5–10. doi:10.1159/00032252821178384
  • Oved K, Morag A, Pasmanik-Chor M, et al. Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics. 2012;13(10):1129–1139. doi:10.2217/pgs.12.9322909203
  • Goldstein D, Lu Y, Detke MJ, et al. Duloxetine in the treatment of depression: a double-blind placebo-controlled comparison with paroxetine. Eur Psychiatry. 2002;12(4):214.
  • Schueler YB, Koesters M, Wieseler B, et al. A systematic review of duloxetine and venlafaxine in major depression, including unpublished data. Acta Psychiatr Scand. 2015;123(4):247–265. doi:10.1111/acps.2011.123.issue-4
  • Montgomery SA. Tolerability of serotonin norepinephrine reuptake inhibitor antidepressants. CNS Spectr. 2008;13(S11):27–33. doi:10.1017/S1092852900028297
  • Monteleone F, Caputo M, Felice Tecce M, et al. Duloxetine in the treatment of depression: an overview. Cent Nerv Syst Agents Med Chem. 2011;11(3):174–183. doi:10.2174/18715241179804780721919872
  • Lopez JP, Fiori LM, Cruceanu C, et al. MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat Commun. 2017;8:15497. doi:10.1038/ncomms1549728530238
  • Lopez JP, Pereira F, Richard-Devantoy S, et al. Co-variation of peripheral levels of miR-1202 and brain activity and connectivity during antidepressant treatment. Neuropsychopharmacology. 2017;42(10):2043–2051. doi:10.1038/npp.2017.928079059
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–354. doi:10.1016/S0006-3223(99)00230-910686270
  • Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801–811. doi:10.1038/mp.2017.25529532791
  • Dewilde KE, Levitch CF, Murrough JW, et al. The promise of ketamine for treatment-resistant depression: current evidence and future directions. Ann N Y Acad Sci. 2015;1345(1):47–58. doi:10.1111/nyas.1264625649308
  • Yang X, Yang Q, Wang X, et al. MicroRNA expression profile and functional analysis reveal that miR-206 is a critical novel gene for the expression of BDNF induced by ketamine. Neuromolecular Med. 2014;16(3):594–605. doi:10.1007/s12017-014-8312-z24839168
  • Soon-Tae Lee MD, Chu K, Jung K-H, et al. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012;72(2):269–277. doi:10.1002/ana.v72.222926857
  • Read J, Arnold C. Is electroconvulsive therapy for depression more effective than placebo? A systematic review of studies since 2009. Ethical Human Psychol Psychiatry. 2017;19(1):5–23. doi:10.1891/1559-4343.19.1.5
  • Ryan KM, O’Donovan SM, Mcloughlin DM. Electroconvulsive stimulation alters levels of BDNF-associated microRNAs. Neurosci Lett. 2013;549(33):125–129. doi:10.1016/j.neulet.2013.05.03523721784
  • Gururajan A, Naughton ME, Scott KA, et al. MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl Psychiatry. 2016;6(8):e862. doi:10.1038/tp.2016.13127483380
  • Kolshus E, Ryan KM, Blackshields G, Smyth P, Sheils O, McLoughlin DM. Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr Scand. 2017;136(6):594–606. doi:10.1111/acps.1282128975998