124
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Frontocingulate Dysfunction Is Associated with Depression and Decreased Serum PON1 in Methamphetamine-Dependent Patients

, , , , &
Pages 489-499 | Published online: 19 Feb 2020

References

  • Graham DL, Noailles PA, Cadet JL. Differential neurochemical consequences of an escalating dose‐binge regimen followed by single‐day multiple‐dose methamphetamine challenges. J Neurochem. 2008;105(5):1873–1885. doi:10.1111/j.1471-4159.2008.05269.x18248616
  • Moszczynska A, Callan SP. Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther. 2017;362(3):474–488. doi:10.1124/jpet.116.23850128630283
  • Yang X, Wang Y, Li Q, et al. The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Front Mol Neurosci. 2018;11:186. doi:10.3389/fnmol.2018.0018629915529
  • Deakin S, Leviev I, Gomaraschi M, Calabresi L, Franceschini G, James RW. Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. J Biol Chem. 2002;277(6):4301–4308. doi:10.1074/jbc.M10744020011726658
  • Sorenson RC, Bisgaier CL, Aviram M, Hsu C, Billecke S, La Du BN. Human serum paraoxonase/arylesterase’s retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: apolipoprotein AI stabilizes activity. Arterioscler Thromb Vasc Biol. 1999;19(9):2214–2225. doi:10.1161/01.ATV.19.9.221410479665
  • Grdic Rajkovic M, Rumora L, Barisic K. The paraoxonase 1, 2 and 3 in humans. Biochem Med. 2011;21(2):122–130. doi:10.11613/issn.1846-7482
  • Aviram M, Rosenblat M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med. 2004;37(9):1304–1316. doi:10.1016/j.freeradbiomed.2004.06.03015454271
  • Fuhrman B. Regulation of hepatic paraoxonase-1 expression. J Lipids. 2012;2012.
  • Jarvik GP, Tsai NT, McKinstry LA, et al. Vitamin C and E intake is associated with increased paraoxonase activity. Arterioscler Thromb Vasc Biol. 2002;22(8):1329–1333. doi:10.1161/01.ATV.0000027101.40323.3A12171796
  • Fuhrman B, Aviram M. Preservation of paraoxonase activity by wine flavonoids: possible role in protection of LDL from lipid peroxidation. Ann N Y Acad Sci. 2002;957(1):321–324. doi:10.1111/nyas.2002.957.issue-112074989
  • Aviram M, Dornfeld L, Rosenblat M, et al. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E–deficient mice. Am J Clin Nutr. 2000;71(5):1062–1076. doi:10.1093/ajcn/71.5.106210799367
  • Moya C, Máñez S. Paraoxonases: metabolic role and pharmacological projection. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(4):349–359. doi:10.1007/s00210-018-1473-929404699
  • Shunmoogam N, Naidoo P, Chilton R. Paraoxonase (PON)-1: a brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc Health Risk Manag. 2018;14:137. doi:10.2147/VHRM.S16517329950852
  • Mackness M, Mackness B. Current aspects of paraoxonase-1 research In: The HDL Handbook—Biological Functions and Clinical Implications, 2nd ed Academic Press: London, UK: Elsevier; 2014:273–291.
  • Cervellati C, Valacchi G, Tisato V, Zuliani G, Marsillach J. Evaluating the link between Paraoxonase-1 levels and Alzheimer’s disease development. Minerva Med. 2018;110(3):238–250.30334443
  • Nunes SOV, de Castro MRP, Moreira EG, et al. Association of paraoxonase (PON) 1 activity, glutathione S-transferase GST T1/M1 and STin. 2 polymorphisms with comorbidity of tobacco use disorder and mood disorders. Neurosci Lett. 2015;585:132–137. doi:10.1016/j.neulet.2014.11.00225445355
  • Bortolasci CC, Vargas HO, Souza-Nogueira A, et al. Lowered plasma paraoxonase (PON) 1 activity is a trait marker of major depression and PON1 Q192R gene polymorphism – smoking interactions differentially predict the odds of major depression and bipolar disorder. J Affect Disord. 2014;159:23–30. doi:10.1016/j.jad.2014.02.01824679385
  • Nunes SOV, Vargas HO, Prado E, et al. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence. Neurosci Biobehav Rev. 2013;37(8):1336–1345. doi:10.1016/j.neubiorev.2013.04.01423660457
  • Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360(1):201–205. doi:10.1124/jpet.116.23750327754930
  • Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325–340. doi:10.5607/en.2015.24.4.32526713080
  • Butterfield DA, Lange MLB, Sultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta. 2010;1801(8):924–929.20176130
  • Sekine Y, Minabe Y, Ouchi Y, et al. Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry. 2003;160(9):1699–1701. doi:10.1176/appi.ajp.160.9.169912944350
  • Thompson PM, Hayashi KM, Simon SL, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci. 2004;24(26):6028–6036. doi:10.1523/JNEUROSCI.0713-04.200415229250
  • Yuan J, Liu XD, Han M, et al. Comparison of striatal dopamine transporter levels in chronic heroin‐dependent and methamphetamine‐dependent subjects. Addict Biol. 2017;22(1):229–234. doi:10.1111/adb.2017.22.issue-126040446
  • London ED, Kohno M, Morales AM, Ballard ME. Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res. 2015;1628:174–185. doi:10.1016/j.brainres.2014.10.04425451127
  • Salo R, Fassbender C, Buonocore MH, Ursu S. Behavioral regulation in methamphetamine abusers: an fMRI study. Psychiatry Res Neuroimaging. 2013;211(3):234–238. doi:10.1016/j.pscychresns.2012.10.003
  • Paulus MP, Hozack NE, Zauscher BE, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology. 2002;26(1):53. doi:10.1016/S0893-133X(01)00334-711751032
  • Nestor LJ, Ghahremani DG, Monterosso J, London ED. Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Res Neuroimaging. 2011;194(3):287–295. doi:10.1016/j.pscychresns.2011.04.010
  • Zweben JE, Cohen JB, Christian D, et al. Psychiatric symptoms in methamphetamine users. Am J Addict. 2004;13(2):181–190. doi:10.1080/1055049049043605515204668
  • Hermens DF, Lubman DI, Ward PB, Naismith SL, Hickie IB. Amphetamine psychosis: a model for studying the onset and course of psychosis. Med J Aust. 2009;190(4):S22. doi:10.5694/j.1326-5377.2009.tb02370.x19220169
  • Potvin S, Pelletier J, Grot S, Hebert C, Barr AM, Lecomte T. Cognitive deficits in individuals with methamphetamine use disorder: a meta-analysis. Addict Behav. 2018;80:154–160. doi:10.1016/j.addbeh.2018.01.02129407687
  • Liu T, Zhong S, Liao X, et al. A meta-analysis of oxidative stress markers in depression. PLoS One. 2015;10(10):e0138904. doi:10.1371/journal.pone.013890426445247
  • Moreira EG, Correia DG, Bonifácio KL, et al. Lowered PON1 activities are strongly associated with depression and bipolar disorder, recurrence of (hypo) mania and depression, increased disability and lowered quality of life. World J Biol Psychiatry. 2019;20(5):368–380. doi:10.1080/15622975.2017.132221928441923
  • Lovibond S, Lovibond P. Manual for the Depression Anxiety Stress Scale. Sydney: The Psychological Foundation of Australia. Inc; 1995.
  • Asghari A, Saed F, Dibajnia P. Psychometric properties of the depression anxiety stress scales-21 (DASS-21) in a non-clinical Iranian sample. Int J Psychol. 2008;2(2):82–102.
  • Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology. 1999;146(4):373–390. doi:10.1007/PL0000548310550488
  • Heinonen J, Numminen J, Hlushchuk Y, Antell H, Taatila V, Suomala J. Default mode and executive networks areas: association with the serial order in divergent thinking. PLoS One. 2016;11(9):e0162234. doi:10.1371/journal.pone.016223427627760
  • Benedict RH, Shucard DW, Maria MPS, et al. Covert auditory attention generates activation in the rostral/dorsal anterior cingulate cortex. J Cogn Neurosci. 2002;14(4):637–645. doi:10.1162/0898929026004576512126504
  • London ED, Berman SM, Voytek B, et al. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biol Psychiatry. 2005;58(10):770–778. doi:10.1016/j.biopsych.2005.04.03916095568
  • Feil J, Sheppard D, Fitzgerald PB, Yücel M, Lubman DI, Bradshaw JL. Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neurosci Biobehav Rev. 2010;35(2):248–275. doi:10.1016/j.neubiorev.2010.03.00120223263
  • Dreher J-C, Grafman J. Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cereb Cortex. 2003;13(4):329–339. doi:10.1093/cercor/13.4.32912631562
  • Carter CS, Macdonald AM, Botvinick M, et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2000;97(4):1944–1948. doi:10.1073/pnas.97.4.194410677559
  • Volkow ND, Wang G-J, Tomasi D, Baler RD. Unbalanced neuronal circuits in addiction. Curr Opin Neurobiol. 2013;23(4):639–648. doi:10.1016/j.conb.2013.01.00223434063
  • London ED, Simon SL, Berman SM, et al. Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Arch Gen Psychiatry. 2004;61(1):73–84. doi:10.1001/archpsyc.61.1.7314706946
  • Nordahl TE, Salo R, Natsuaki Y, et al. Methamphetamine users in sustained abstinence: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2005;62(4):444–452. doi:10.1001/archpsyc.62.4.44415809412
  • Salo R, Ursu S, Buonocore MH, Leamon MH, Carter C. Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol Psychiatry. 2009;65(8):706–709. doi:10.1016/j.biopsych.2008.11.02619136097
  • Jan RK, Lin JC, McLaren DG, Kirk IJ, Kydd RR, Russell BR. The effects of methylphenidate on cognitive control in active methamphetamine dependence using functional magnetic resonance imaging. Front Psychiatry. 2014;5:20. doi:10.3389/fpsyt.2014.0002024639656
  • Salo R, Nordahl TE, Buonocore MH, et al. Cognitive control and white matter callosal microstructure in methamphetamine-dependent subjects: a diffusion tensor imaging study. Biol Psychiatry. 2009;65(2):122–128. doi:10.1016/j.biopsych.2008.08.00418814867
  • Aboitiz F, Rodriguez E, Olivares R, Zaidel E. Age-related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport. 1996;7(11):1761–1764. doi:10.1097/00001756-199607290-000138905659
  • LaMantia A, Rakic P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci. 1990;10(7):2156–2175. doi:10.1523/JNEUROSCI.10-07-02156.19902376772
  • Huckans M, Fuller BE, Chalker AL, Adams M, Loftis JM. Plasma inflammatory factors are associated with anxiety, depression, and cognitive problems in adults with and without methamphetamine dependence: an exploratory protein array study. Front Psychiatry. 2015;6:178. doi:10.3389/fpsyt.2015.0017826732994
  • Wilson JM, Kalasinsky KS, Levey AI, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med. 1996;2(6):699. doi:10.1038/nm0696-6998640565
  • Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64(3):327–337. doi:10.1001/archpsyc.64.3.32717339521
  • Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40(2):288–295. doi:10.1093/clinchem/40.2.2887508830
  • Joca L, Zuloaga DG, Raber J, Siegel JA. Long-term effects of early adolescent methamphetamine exposure on depression-like behavior and the hypothalamic vasopressin system in mice. Dev Neurosci. 2014;36(2):108–118. doi:10.1159/00036000124686407
  • Shetty V, Mooney LJ, Zigler CM, Belin TR, Murphy D, Rawson R. The relationship between methamphetamine use and increased dental disease. J Am Dent Assoc. 2010;141(3):307–318. doi:10.14219/jada.archive.2010.016520194387
  • Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 2011;36(1):183. doi:10.1038/npp.2010.16620861828
  • Domagała T, Łacinski M, Trzeciak W, Mackness B, Mackness M, Jakubowski H. The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol (Noisy-Le-Grand). 2006;52(5):4–10.17543199
  • Suehiro T, Ikeda Y, Shiinoki T, et al. Serum paraoxonase (PON1) concentration in patients undergoing hemodialysis. J Atheroscler Thromb. 2002;9(3):133–138. doi:10.5551/jat.9.13312226554
  • Bodolay E, Seres I, Szodoray P, et al. Evaluation of paraoxonase activity in patients with mixed connective tissue disease. J Rheumatol. 2008;35(2):237–243.18085736
  • Paragh G, Balla P, Katona E, Seres I, Égerházi A, Degrell I. Serum paraoxonase activity changes in patients with Alzheimer’s disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci. 2002;252(2):63–67. doi:10.1007/s00406020001312111338
  • Zengi O, Karakas A, Ergun U, Senes M, Inan L, Yucel D. Urinary 8-hydroxy-2′-deoxyguanosine level and plasma paraoxonase 1 activity with Alzheimer’s disease. Clin Chem Lab Med. 2012;50(3):529–534. doi:10.1515/cclm.2011.792
  • Paşca SP, Nemeş B, Vlase L, et al. High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sci. 2006;78(19):2244–2248. doi:10.1016/j.lfs.2005.09.04016297937
  • Juretić D, Motejlkova A, Kunovic B, et al. Paraoxonase/arylesterase in serum of patients with type II diabetes mellitus. Acta Pharm. 2006;56(1):59–68.16613735
  • Goswami B, Tayal D, Gupta N, Mallika V. Paraoxonase: a multifaceted biomolecule. Clin Chim Acta. 2009;410(1–2):1–12. doi:10.1016/j.cca.2009.09.02519799889
  • Hashimoto K, Tsukada H, Nishiyama S, et al. Effects of N‐Acetyl‐l‐Cysteine on the reduction of brain dopamine transporters in monkey treated with methamphetamine. Ann N Y Acad Sci. 2004;1025(1):231–235. doi:10.1196/annals.1316.02815542721
  • Vargas HO, Nunes SOV, de Castro MRP, et al. Oxidative stress and inflammatory markers are associated with depression and nicotine dependence. Neurosci Lett. 2013;544:136–140. doi:10.1016/j.neulet.2013.03.05923583694