165
Views
21
CrossRef citations to date
0
Altmetric
Original Research

Protective Role of Astrocyte-Derived Exosomal microRNA-361 in Cerebral Ischemic-Reperfusion Injury by Regulating the AMPK/mTOR Signaling Pathway and Targeting CTSB

, , , &
Pages 1863-1877 | Published online: 31 Jul 2020

References

  • Liu Y, Ma Y, Zhang B, Wang SX, Wang XM, Yu JM. Genetic polymorphisms in pre-microRNAs and risk of ischemic stroke in a Chinese population. J Mol Neurosci. 2014;52(4):473–480.24178064
  • Maddahi A, Kruse LS, Chen QW, Edvinsson L. The role of tumor necrosis factor-alpha and TNF-alpha receptors in cerebral arteries following cerebral ischemia in rat. J Neuroinflammation. 2011;8(1):107. doi:10.1186/1742-2094-8-10721871121
  • Yan RY, Wang SJ, Yao GT, Liu ZG, Xiao N. The protective effect and its mechanism of 3-n-butylphthalide pretreatment on cerebral ischemia reperfusion injury in rats. Eur Rev Med Pharmacol Sci. 2017;21(22):5275–5282. doi:10.26355/eurrev_201711_1385229228445
  • Xu F, Ma R, Zhang G, et al. Estrogen and propofol combination therapy inhibits endoplasmic reticulum stress and remarkably attenuates cerebral ischemia-reperfusion injury and OGD injury in hippocampus. Biomed Pharmacother. 2018;108:1596–1606. doi:10.1016/j.biopha.2018.09.16730372862
  • Al-Mufti F, Amuluru K, Roth W, Nuoman R, El-Ghanem M, Meyers PM. Cerebral ischemic reperfusion injury following recanalization of large vessel occlusions. Neurosurgery. 2018;82(6):781–789. doi:10.1093/neuros/nyx34128973661
  • Wu PF, Zhang Z, Wang F, Chen JG. Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacol Sin. 2010;31(12):1523–1531. doi:10.1038/aps.2010.18621127495
  • Cetin C, Erdogan AM, Dincel GC, Bakar B, Kisa U. Effects of sulphasalazine in cerebral ischemia reperfusion injury in rat. Arch Med Res. 2017;48(3):247–256. doi:10.1016/j.arcmed.2017.06.00428923326
  • Gyorgy B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55(1):439–464. doi:10.1146/annurev-pharmtox-010814-12463025292428
  • Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012;3:228. doi:10.3389/fphys.2012.0022822754538
  • Deng M, Xiao H, Peng H, et al. Preservation of neuronal functions by exosomes derived from different human neural cell types under ischemic conditions. Eur J Neurosci. 2018;47(2):150–157. doi:10.1111/ejn.1378429178548
  • Xian P, Hei Y, Wang R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice. Theranostics. 2019;9(20):5956–5975. doi:10.7150/thno.3387231534531
  • Nafar F, Williams JB, Mearow KM. Astrocytes release HspB1 in response to amyloid-beta exposure in vitro. J Alzheimers Dis. 2016;49(1):251–263. doi:10.3233/JAD-15031726444769
  • Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol. 2007;67(13):1815–1829. doi:10.1002/dneu.2055917701989
  • Yu H, Wu M, Zhao P, Huang Y, Wang W, Yin W. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. J Cell Biochem. 2015;116(2):233–241. doi:10.1002/jcb.2496025186498
  • Wang K, Liu CY, Zhang XJ, et al. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ. 2015;22(6):1058–1068. doi:10.1038/cdd.2014.20025501599
  • Kar S, Bali KK, Baisantry A, Geffers R, Samii A, Bertalanffy H. Genome-wide sequencing reveals MicroRNAs downregulated in cerebral cavernous malformations. J Mol Neurosci. 2017;61(2):178–188. doi:10.1007/s12031-017-0880-628181149
  • Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol. 2015;25(11):651–665. doi:10.1016/j.tcb.2015.07.01126437588
  • Ozden H, Durmaz R, Kanbak G, et al. Erythropoietin prevents nitric oxide and cathepsin-mediated neuronal death in focal brain ischemia. Brain Res. 2011;1370:185–193. doi:10.1016/j.brainres.2010.11.04521108937
  • Zuo X, Hou Q, Jin J, et al. Inhibition of cathepsin b alleviates secondary degeneration in ipsilateral thalamus after focal cerebral infarction in adult rats. J Neuropathol Exp Neurol. 2016;75(9):816–826. doi:10.1093/jnen/nlw05427371711
  • Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem. 2013;288(14):10093–10099. doi:10.1074/jbc.C112.44456223430739
  • Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. doi:10.1161/01.STR.20.1.842643202
  • Qian Z, Lin Y, Xing J, Qiu Y, Ren L. Expression and functions of glutamate and gamma-aminobutyric acid transporters in ischemic models. Mol Med Rep. 2018;17(6):8196–8202. doi:10.3892/mmr.2018.888829693164
  • Yang Z, Weian C, Susu H, Hanmin W. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms. Eur J Pharmacol. 2016;771:145–151. doi:10.1016/j.ejphar.2015.12.00326656757
  • Gutierrez IL, Gonzalez-Prieto M, Garcia-Bueno B, Caso JR, Leza JC, Madrigal JLM. Alternative method to detect neuronal degeneration and amyloid beta accumulation in free-floating brain sections with fluoro-jade. ASN Neuro. 2018;10:1759091418784357. doi:10.1177/175909141878435729950099
  • Tian SF, Yang HH, Xiao DP, et al. Mechanisms of neuroprotection from hypoxia-ischemia (HI) brain injury by up-regulation of cytoglobin (CYGB) in a neonatal rat model. J Biol Chem. 2013;288(22):15988–16003. doi:10.1074/jbc.M112.42878923585565
  • Chinenov Y, Kerppola TK. Close encounters of many kinds: fos-Jun interactions that mediate transcription regulatory specificity. Oncogene. 2001;20(19):2438–2452. doi:10.1038/sj.onc.120438511402339
  • Rawat V, Goux W, Piechaczyk M, Dm SR. c-Fos protects neurons through a noncanonical mechanism involving HDAC3 interaction: identification of a 21-Amino acid fragment with neuroprotective activity. Mol Neurobiol. 2016;53(2):1165–1180. doi:10.1007/s12035-014-9058-125592718
  • Tao T, Feng JZ, Xu GH, Fu J, Li XG, Qin XY. Minocycline promotes neurite outgrowth of PC12 cells exposed to oxygen-glucose deprivation and reoxygenation through regulation of MLCP/MLC Signaling pathways. Cell Mol Neurobiol. 2017;37(3):417–426. doi:10.1007/s10571-016-0374-z27098315
  • Deng Y, Chen D, Gao F, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng. 2019;13(1):71. doi:10.1186/s13036-019-0193-031485266
  • Hong Y, Zhao T, Li XJ, Li S. Mutant Huntingtin Inhibits alphaB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes. J Neurosci. 2017;37(39):9550–9563. doi:10.1523/JNEUROSCI.1418-17.201728893927
  • Zhang ZG, Chopp M. Exosomes in stroke pathogenesis and therapy. J Clin Invest. 2016;126(4):1190–1197. doi:10.1172/JCI8113327035810
  • Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–222. doi:10.1016/j.scr.2009.12.00320138817
  • Sze SK, de Kleijn DP, Lai RC, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics. 2007;6(10):1680–1689. doi:10.1074/mcp.M600393-MCP20017565974
  • Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–149. doi:10.1016/j.biomaterials.2017.10.01229040874
  • Abdullah M, Takase H, Nunome M, et al. Amyloid-beta reduces exosome release from astrocytes by enhancing JNK phosphorylation. J Alzheimers Dis. 2016;53(4):1433–1441. doi:10.3233/JAD-16029227392863
  • Huang JL, Qu Y, Tang J, et al. [Protective effect of astrocyte exosomes on hypoxic-ischemic neurons]. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(5):397–402. Chinese.29764578
  • Basso M, Pozzi S, Tortarolo M, et al. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J Biol Chem. 2013;288(22):15699–15711. doi:10.1074/jbc.M112.42506623592792
  • Wang G, Dinkins M, He Q, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem. 2012;287(25):21384–21395. doi:10.1074/jbc.M112.34051322532571
  • Chen J, Chopp M. Exosome Therapy for Stroke. Stroke. 2018;49(5):1083–1090. doi:10.1161/STROKEAHA.117.01829229669873
  • Tian L, Zhao Z, Xie L, Zhu J. MiR-361-5p suppresses chemoresistance of gastric cancer cells by targeting FOXM1 via the PI3K/Akt/mTOR pathway. Oncotarget. 2018;9(4):4886–4896. doi:10.18632/oncotarget.2351329435149
  • Zhang X, Wei C, Li J, Liu J, Qu J. MicroRNA-361-5p inhibits epithelial-to-mesenchymal transition of glioma cells through targeting Twist1. Oncol Rep. 2017;37(3):1849–1856. doi:10.3892/or.2017.540628184914
  • Wang HW, Lo HH, Chiu YL, et al. Dysregulated miR-361-5p/VEGF axis in the plasma and endothelial progenitor cells of patients with coronary artery disease. PLoS One. 2014;9(5):e98070. doi:10.1371/journal.pone.009807024865854
  • Liu B, Lu B, Wang X, Jiang H, Kuang W. MiR-361-5p inhibits cell proliferation and induces cell apoptosis in retinoblastoma by negatively regulating CLDN8. Childs Nerv Syst. 2019;35(8):1303–1311. doi:10.1007/s00381-019-04199-931161266
  • Radunz S, Wedepohl S, Rohr M, Calderon M, Tschiche HR, Resch-Genger U. pH-Activatable Singlet Oxygen-Generating Boron-dipyrromethenes (BODIPYs) for Photodynamic Therapy and Bioimaging. J Med Chem. 2020;63(4):1699–1708. doi:10.1021/acs.jmedchem.9b0187331967820
  • Xie Y, Yao FL, Li X. MicroRNA-361 regulates apoptosis of cardiomyocytes after ischemic-reperfusion injury. Eur Rev Med Pharmacol Sci. 2019;23(12):5413–5421. doi:10.26355/eurrev_201906_1821031298394
  • Benchoua A, Braudeau J, Reis A, Couriaud C, Onteniente B. Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab. 2004;24(11):1272–1279. doi:10.1097/01.WCB.0000140272.54583.FB15545923
  • Anagli J, Abounit K, Stemmer P, et al. Effects of cathepsins B and L inhibition on postischemic protein alterations in the brain. Biochem Biophys Res Commun. 2008;366(1):86–91. doi:10.1016/j.bbrc.2007.11.10418060871
  • Xing S, Zhang J, Dang C, et al. Cerebrolysin reduces amyloid-beta deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction. J Neurol Sci. 2014;337(1–2):104–111. doi:10.1016/j.jns.2013.11.02824315581
  • Pu T, Liao XH, Sun H, et al. Augmenter of liver regeneration regulates autophagy in renal ischemia-reperfusion injury via the AMPK/mTOR pathway. Apoptosis. 2017;22(7):955–969. doi:10.1007/s10495-017-1370-628466106