107
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Functional Analysis of the 3ʹ Untranslated Region of the Human GRIN1 Gene in Regulating Gene Expression in vitro

, , , ORCID Icon &
Pages 2361-2370 | Published online: 12 Oct 2020

References

  • Papouin T, Oliet SH. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130601. doi:10.1098/rstb.2013.060125225095
  • Fountoulakis KN. The possible involvement of NMDA glutamate receptor in the etiopathogenesis of bipolar disorder. Curr Pharm Des. 2012;18:1605–1608.22280433
  • Symonds JD, Zuberi SM, Johnson MR. Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Curr Opin Neurol. 2017;30:193–199.28212175
  • Balu DT. The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv Pharmacol. 2016;76:351–382.27288082
  • Kuhner D, Stahl M, Demircioglu DD, et al. From cells to muropeptide structures in 24 H: peptidoglycan mapping by UPLC-MS. Sci Rep. 2014;4:7494. doi:10.1038/srep0749425510564
  • Vyklicky V, Korinek M, Smejkalova T, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl 1):S191–203. doi:10.33549/physiolres.93267824564659
  • Kalev-Zylinska ML, Symes W, Young D, et al. Knockdown and overexpression of NR1 modulates NMDA receptor function. Mol Cell Neurosci. 2009;41:383–396. doi:10.1016/j.mcn.2009.04.00319394426
  • Ding J, Zhou HH, Ma QR, et al. Expression of NR1 and apoptosis levels in the hippocampal cells of mice treated with MK801. Mol Med Rep. 2017;16:8359–8364. doi:10.3892/mmr.2017.767428990059
  • Kristiansen LV, Huerta I, Beneyto M, et al. NMDA receptors and schizophrenia. Curr Opin Pharmacol. 2007;7:48–55. doi:10.1016/j.coph.2006.08.01317097347
  • Park JK, Lee SJ, Kim TW. Treadmill exercise enhances NMDA receptor expression in schizophrenia mice. J Exerc Rehabil. 2014;10:15–21. doi:10.12965/jer.14008824678500
  • Law AJ, Deakin JF. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport. 2001;12:2971–2974. doi:10.1097/00001756-200109170-0004311588613
  • Ibrahim HM, Hogg AJ, Healy DJ, et al. Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry. 2000;157:1811–1823. doi:10.1176/appi.ajp.157.11.181111058479
  • Mccullumsmith RE, Kristiansen LV, Beneyto M, et al. Decreased NR1, NR2a, and Sap102 transcript expression in the hippocampus in bipolar disorder. Brain Res. 2007;1127:108–118. doi:10.1016/j.brainres.2006.09.01117113057
  • Mishizen-Eberz AJ, Rissman RA, Carter TL, et al. Biochemical and molecular studies of NMDA receptor subunits NR1/2a/2b in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis. 2004;15:80–92. doi:10.1016/j.nbd.2003.09.01614751773
  • Day GS, Pruss H, Benseler SM, et al. GRIN1 polymorphisms do not affect susceptibility or phenotype in NMDA receptor encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e153. doi:10.1212/NXI.000000000000015326443875
  • Bartel DP. Micrornas: target recognition and regulatory functions. Cell. 2009;136:215–233. doi:10.1016/j.cell.2009.01.00219167326
  • Shukla GC, Singh J, Barik S. Micrornas: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 2011;3:83–92.22468167
  • Kim Y, Zhang Y, Pang K, et al. Bipolar disorder associated microRNA, Mir-1908-5p, regulates the expression of genes functioning in neuronal glutamatergic synapses. Exp Neurobiol. 2016;25:296–306. doi:10.5607/en.2016.25.6.29628035180
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–222. doi:10.1038/nrd.2016.24628209991
  • Wojciechowska A, Braniewska A, Kozar-Kaminska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017;26:865–874. doi:10.17219/acem/6291529068585
  • Singh A, Sen D. MicroRNAs in Parkinson’s disease. Exp Brain Res. 2017;235:2359–2374. doi:10.1007/s00221-017-4989-128526930
  • Herrera-Espejo S, Santos-Zorrozua B, Alvarez-Gonzalez P, et al. A systematic review of microRNA expression as biomarker of late-onset Alzheimer’s disease. Mol Neurobiol. 2019;56:8376–8391. doi:10.1007/s12035-019-01676-931240600
  • Zheng H, Tang R, Yao Y, et al. Mir-219 protects against seizure in the kainic acid model of epilepsy. Mol Neurobiol. 2016;53:1–7. doi:10.1007/s12035-014-8981-525394384
  • Wang J, Xu W, Shao J, et al. Mir-219-5p targets camkiigamma to attenuate morphine tolerance in rats. Oncotarget. 2017;8:28203–28214. doi:10.18632/oncotarget.1599728423675
  • Zhang L, Chen ZW, Yang SF, et al. MicroRNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway. CNS Neurosci Ther. 2019;25:69–77. doi:10.1111/cns.1298129804319
  • Burgess N, Maguire EA, O’keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–641.12194864
  • Mohammed CP, Rhee H, Phee BK, et al. Mir-204 downregulates EPHB2 in aging mouse hippocampal neurons. Aging Cell. 2016;15:380–388. doi:10.1111/acel.1244426799631
  • Huang Y, Liu X, Liao Y, et al. Role of mir-34c in the cognitive function of epileptic rats induced by pentylenetetrazol. Mol Med Rep. 2018;17:4173–4180.29344671
  • Wu X, Ding M, Liu Y, et al. Hsa-Mir-3177-5p and hsa-mir-3178 inhibit 5-ht1a expression by binding the 3ʹ-UTR region in vitro. Front Mol Neurosci. 2019;12:13. doi:10.3389/fnmol.2019.0001330766477
  • Geisse S, Henke M. Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genomics. 2005;6:165–170. doi:10.1007/s10969-005-2826-416211514
  • Nettleship JE, Watson PJ, Rahman-Huq N, et al. Transient expression in hek 293 cells: an alternative to E. coli for the production of secreted and intracellular mammalian proteins. Methods Mol Biol. 2015;1258:209–222.25447866
  • Gonzalez-Arenas A, De La Fuente-granada M, Camacho-Arroyo I, et al. Tibolone effects on human glioblastoma cell lines. Arch Med Res. 2019;50:187–196. doi:10.1016/j.arcmed.2019.08.00131499479
  • Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973;33:2643–2652.4748425
  • Riffo-Campos AL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci. 2016;17:1987. doi:10.3390/ijms17121987
  • Akhtar MM, Micolucci L, Islam MS, et al. A practical guide to miRNA target prediction. Methods Mol Biol. 2019;1970:1–13.30963484
  • Liu R, Li F, Zhao W. Long noncoding RNA NEAT1 knockdown inhibits MPP(+)-induced apoptosis, inflammation and cytotoxicity in SK-N-SH cells by regulating miR-212-5p/RAB3IP axis. Neurosci Lett. 2020;731:135060. doi:10.1016/j.neulet.2020.13506032442477
  • Sun S, Han X, Li X, et al. MicroRNA-212-5p prevents dopaminergic neuron death by inhibiting SIRT2 in MPTP-induced mouse model of Parkinson’s disease. Front Mol Neurosci. 2018;11:381. doi:10.3389/fnmol.2018.0038130364275
  • Vallelunga A, Ragusa M, Di Mauro S, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and multiple system atrophy. Front Cell Neurosci. 2014;8:156. doi:10.3389/fncel.2014.0015624959119
  • Zhao XH, Wang YB, Yang J, et al. MicroRNA-326 suppresses INOS expression and promotes autophagy of dopaminergic neurons through the JNK signaling by targeting XBP1 in a mouse model of Parkinson’s disease. J Cell Biochem. 2019;120:14995–15006. doi:10.1002/jcb.2876131135066
  • Zhang Y, Xu W, Nan S, et al. MicroRNA-326 inhibits apoptosis and promotes proliferation of dopaminergic neurons in Parkinson’s disease through suppression of KLK7-mediated MAPK signaling pathway. J Mol Neurosci. 2019;69:197–214. doi:10.1007/s12031-019-01349-131270675
  • He B, Chen W, Zeng J, et al. MicroRNA-326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimer’s disease. J Cell Physiol. 2020;235:480–493. doi:10.1002/jcp.2898831385301
  • Lu L, Cai M, Peng M, et al. Mir-491-5p functions as a tumor suppressor by targeting IGF2 in colorectal cancer. Cancer Manag Res. 2019;11:1805–1816. doi:10.2147/CMAR.S18308530863186
  • Yu T, Wang LN, Li W, et al. Downregulation of miR-491-5p promotes gastric cancer metastasis by regulating snail and FGFR4. Cancer Sci. 2018;109:1393–1403.29569792
  • Xu Y, Hou R, Lu Q, et al. Mir-491-5p negatively regulates cell proliferation and motility by targeting PDGFRA in prostate cancer. Am J Cancer Res. 2017;7:2545–2553.29312807
  • Feng L, Ma J, Ji H, et al. Mir-184 retarded the proliferation, invasiveness and migration of glioblastoma cells by repressing stanniocalcin-2. Pathol Oncol Res. 2018;24:853–860. doi:10.1007/s12253-017-0298-z28887636
  • Zhao P, Sun S, Zhai Y, et al. Mir-423-5p inhibits the proliferation and metastasis of glioblastoma cells by targeting phospholipase C beta 1. Int J Clin Exp Pathol. 2019;12:2941–2950.31934130
  • Chen D, Li J, Li S, et al. Mir-184 promotes cell proliferation in tongue squamous cell carcinoma by targeting SOX7. Oncol Lett. 2018;16:2221–2228.30008922
  • Zhu HM, Jiang XS, Li HZ, et al. Mir-184 inhibits tumor invasion, migration and metastasis in nasopharyngeal carcinoma by targeting notch2. Cell Physiol Biochem. 2018;49:1564–1576. doi:10.1159/00049345930223264
  • Sun G, Ding X, Bi N, et al. Mir-423-5p in brain metastasis: potential role in diagnostics and molecular biology. Cell Death Dis. 2018;9:936. doi:10.1038/s41419-018-0955-530224667
  • Tang X, Zeng X, Huang Y, et al. Mir-423-5p serves as a diagnostic indicator and inhibits the proliferation and invasion of ovarian cancer. Exp Ther Med. 2018;15:4723–4730.29849781
  • Annese A, Manzari C, Lionetti C, et al. Whole transcriptome profiling of late-onset Alzheimer’s disease patients provides insights into the molecular changes involved in the disease. Sci Rep. 2018;8:4282. doi:10.1038/s41598-018-22701-229523845
  • Azevedo JA, Carter BS, Meng F, et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res. 2016;82:58–67. doi:10.1016/j.jpsychires.2016.07.01227468165
  • Mendes-Silva AP, Fujimura PT, Silva J, et al. Brain-enriched microRNA-184 is downregulated in older adults with major depressive disorder: a translational study. J Psychiatr Res. 2019;111:110–120. doi:10.1016/j.jpsychires.2019.01.01930716647
  • Dos Santos MCT, Barreto-Sanz MA, Correia BRS, et al. Mirna-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget. 2018;9:17455–17465. doi:10.18632/oncotarget.2473629707120