672
Views
5
CrossRef citations to date
0
Altmetric
REVIEW

Rett Syndrome and MECP2 Duplication Syndrome: Disorders of MeCP2 Dosage

ORCID Icon & ORCID Icon
Pages 2813-2835 | Received 08 Sep 2022, Accepted 14 Nov 2022, Published online: 29 Nov 2022

References

  • Haas RH. The history and challenge of rett syndrome. J Child Neurol. 1988;3(1_suppl):S3–S5. doi:10.1177/0883073888003001S02
  • Rett A. On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wiener Medizinische Wochenschrift. 1966;116(37):723–726.
  • Hagberg B, Aicardi J, Dias K, Ramos O, Progressive A. Syndrome of Autism, Dementia, Ataxia, and Loss of Purposeful Hand Use in Girls: rett’s Syndrome: report of 35 Cases. Ann Neurol. 1983;14(4):471–479.
  • Hagberg B, Rett Syndrome: W-EI. A suggested staging system for describing impairment profile with increasing age towards adolescence. Am J Med Genet. 1986;1:47–59.
  • Fu C, Armstrong D, Marsh E, et al. Multisystem comorbidities in classic Rett syndrome: a scoping review. BMJ Paediatr Open. 2020;4:e000731.
  • Motil KJ, Barrish JO, Lane J, et al. Vitamin D Deficiency is Prevalent in Females with Rett Syndrome. J Pediatr Gastroenterol Nutr. 2011;53(5):569–574.
  • Killian JT, Lane JB, Lee H-S, et al. Scoliosis in Rett Syndrome: progression, Comorbidities, and Predictors. Pediatr Neurol. 2017;70:20–25.
  • Neul JL, Kaufmann WE, Glaze DG, et al. Rett syndrome: revised Diagnostic Criteria and Nomenclature. Ann Neurol. 2010;68(6):944–950.
  • Laurvick CL, de Klerk N, Bower C, et al. Rett syndrome in Australia: a review of the epidemiology. J Pediatr. 2006;148(3):347–352.
  • Zoghbi ZH. Genetic Aspects of Rett Syndrome. J Child Neurol. 1988;3(1_suppl):S76–S78. doi:10.1177/0883073888003001S15
  • Zoghbi HY, Percy AK, Schultz RJ, Fill C. Patterns of X Chromosome Inactivation in the Rett Syndrome. Brain Dev. 1990;12(1):131–135.
  • Schanen C, Francke U, Severely Affected A. Male Born into Rett Syndrome Kindred Supports X-linked Inheritance and Allows Extension of the Exclusion Map. Am J Hum Genet. 1998;63(1):267–269.
  • Schanen NC, Dahle EJR, Capozzoli F, et al. Syndrome Family Consistent with X-Linked Inheritance Expands the X chromosome Exclusion Map. Am J Hum Genet. 1997;61(3):634–641.
  • Ellison KA, Fill CP, Terwilliger J, et al. Examination of X chromosome Markers in Rett Syndrome: exclusion Mapping with a Novel Variation on Multilocus Linkage Analysis. Am J Hum Genet. 1992;50(2):278–287.
  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–188.
  • Sirianni N, Naidu S, Pereira J, Pillotto RF, Hoffman EP. Rett Syndrome: confirmation of X-linked Dominant Inheritance, and Localization of the Gene to Xq28. Am J Hum Genet. 1998;63(5):1552–1558.
  • Curtis ARJ, Headland S, Lindsay S, et al. X chromosome linkage studies in familial Rett syndrome. Hum Genet. 1993;90(5):551–555.
  • Archidiacono N, Lerone M, Rocchi M, et al. Rett syndrome: exclusion mapping following the hypothesis of germinal mosaicism for new X-linked mutations. Hum Genet. 1991;86(6):604–606.
  • Neul JL, Fang P, Barrish J, et al. Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome. Neurology. 2008;70(16):1313–1321.
  • Cuddapah VA, Pillai RB, Shekar KV, et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J Med Genet. 2014;51(3):152–158.
  • Trappe R, Laccone F, Cobilanschi J, et al. MECP2 Mutations in Sporadic Cases of Rett Syndrome Are Almost Exclusively of Paternal Origin. Am J Hum Genet. 2001;68(5):1093–1101.
  • Wan M, Lee SSJ, Zhang X, et al. Rett Syndrome and Beyond: recurrent Spontaneous and Familial MECP2 Mutations at CpG Hotspots. Am J Hum Genet. 1999;65(6):1520–1529.
  • Girard M, Couvert P, Carrié A, et al. Parental origin of de novo MECP2 mutations in Rett syndrome. Eur J Hum Genet. 2001;9(3):231–236.
  • Zhu X, Li M, Pan H, Bao X, Zhang J, Wu X. Analysis of the Parental Origin of De Novo MECP2 Mutations and X chromosome Inactivation in 24 Sporadic Patients With Rett Syndrome in China. J Child Neurol. 2010;25(7):842–848.
  • Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature. 1980;287(5782):560–561.
  • Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. A unique configuration of genome-wide DNA methylation patterns in the testis. PNAS. 2007;104(1):228–233.
  • Augenstein K, Lane JB, Horton A, Schanen C, Percy AK. Variable phenotypic expression of a MECP2 mutation in a family. J Neurodev Disord. 2009;1(4):313–317.
  • Vorsanova SG, Yurov YB, Ulas VY, et al. Cytogenetic and molecular-cytogenetic studies of Rett syndrome (RTT): a retrospective analysis of a Russian cohort of RTT patients (the investigation of 57 girls and three boys). Brain Dev. 2001;23(Suppl 1):S196–S201.
  • Schwartzman JS, Bernardino A, Nishimura A, Gomes RR, Zatz M. Rett Syndrome in a Boy with a 47, XXY Karyotype Confirmed by a Rare Mutation in the MECP2 Gene. Neuropediatrics. 2001;32(3):162–164.
  • Clayton-Smith J, Watson P, Ramsden S, Black G. Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males. Lancet. 2000;356(9232):830–832.
  • Dayer AG, Bottani A, Bouchardy I, et al. MECP2 mutant allele in a boy with Rett syndrome and his unaffected heterozygous mother. Brain Dev. 2007;29(1):47–50.
  • Neul JL, Benke TA, Marsh ED, et al. The array of clinical phenotypes of males with mutations in Methyl-CpG binding protein 2. Am J Med Genet. 2019;180(1):55–67.
  • Cohen D, Lazar G, Couvert P, et al. MECP2 Mutation in a Boy With Language Disorder and Schizophrenia. Am J Psychiatry. 2002;159(1):148–149.
  • Meins M, Lehmann J, Gerresheim F, et al. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J Med Genet. 2005;42(2):e12.
  • Van Esch H, Bauters M, Ignatius J, et al. Duplication of the MECP2 Region is a Frequent Cause of Severe Mental Retardation and Progressive Neurological Symptoms in Males. Am J Hum Genet. 2005;77(3):442–453.
  • Collins AL, Levenson JM, Vilaythong AP, et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet. 2004;13(21):2679–2689.
  • Bauters M, Van Esch H, Friez MJ, et al. Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair. Genome Res. 2008;18(6):847–858.
  • Carvalho CMB, Zhang F, Liu P, et al. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet. 2009;18(12):2188–2203.
  • Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet. 2009;41(7):849–853.
  • Sanlaville D, Prieur M, de Blois MC, et al. Functional disomy of the Xq28 chromosome region. Eur J Hum Genet. 2005;13(5):579–585.
  • Friez MJ, Jones JR, Clarkson K, et al. Recurrent Infections, Hypotonia, and Mental Retardation Caused by Duplication of MECP2 and Adjacent Region in Xq28. Pediatrics. 2006;118(6):e1687–e1695.
  • Ta D, Downs J, Baynam G, Wilson A, Richmond P, Leonard H. A brief history of MECP2 duplication syndrome: 20‑years of clinical understanding. Orphanet J Rare Dis. 2022;17(1):131.
  • Yang T, Ramocki MB, Neul JL, et al. Overexpression of Methyl-CpG Binding Protein 2 Impairs TH1 Responses. Sci Transl Med. 2012;4(163):163ra158.
  • Bauer M, Kölsch U, Krüger R, et al. Infectious and Immunologic Phenotype of MECP2 Duplication Syndrome. J Clin Immunol. 2015;35(2):168–181.
  • Ramocki MB, Peters SU, Tavyev YJ, et al. Autism and Other Neuropsychiatric Symptoms Are Prevalent in Individuals With MECP2 Duplication Syndrome. Ann Neurol. 2009;66(6):771–782.
  • Peters SU, Hundley RJ, Wilson AK, et al. The Behavioral Phenotype in MECP2 Duplication Syndrome: a Comparison with Idiopathic Autism. Autism Res. 2013;6(1):42–50.
  • Van Esch H. MECP2 Duplication Syndrome. Mol Syndromol. 2012;2(3–5):128–136.
  • Lugtenberg D, Kleefstra T, Oudakker AR, et al. Structural variation in Xq28: MECP2 duplications in 1% of patients with unexplained XLMR and in 2% of male patients with severe encephalopathy. Eur J Hum Genet. 2009;17(4):444–453.
  • Reardon W, Donoghue V, Murphy AM, et al. Progressive cerebellar degenerative changes in the severe mental retardation syndrome caused by duplication of MECP2 and adjacent loci on Xq28. Eur J Pediatr. 2010;169(8):941–949.
  • Schwoerer JS, Laffin J, Haun J, Raca G, Friez MJ, Giampietro PF. MECP2 Duplication: possible Cause of Severe Phenotype in Females. Am J Med Genet Part A. 2014;164A(4):1029–1034.
  • Peters S, Fu C, Suter B, et al. Characterizing the Phenotypic Effect of Xq28 Duplication Size in MECP2 Duplication Syndrome. Clin Genet. 2019;95(5):575–581.
  • Clayton-Smith J, Walters S, Hobson E, et al. Xq28 duplication presenting with intestinal and bladder dysfunction and a distinctive facial appearance. Eur J Hum Genet. 2009;17(4):434–443.
  • Nakagawa O, Arnold M, Nakagawa M, et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 2005;19(17):2066–2077.
  • Vandewalle J, Van Esch H, Govaerts K, et al. Dosage-Dependent Severity of the Phenotype in Patients with Mental Retardation Due to a Recurrent Copy-Number Gain at Xq28 Mediated by an Unusual Recombination. Am J Hum Genet. 2009;85(6):809–822.
  • Vanmarsenille L, Giannandrea M, Fieremans N, et al. Increased Dosage of RAB39B Affects Neuronal Development and Could Explain the Cognitive Impairment in Male Patients with Distal Xq28 Copy Number Gains. Hum Mutat. 2014;35(3):377–383.
  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–220.
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–492.
  • Ehrlich M, Gama-Sosa MA, Huang L-H, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10(8):2709–2721.
  • Meehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 1992;20(19):5085–5092.
  • Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. PNAS. 2006;103(5):1412–1417.
  • Ball MP, Li JB, Gao Y, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009;27(4):361–368.
  • Xie W, Barr CL, Kim A, et al. Base-Resolution Analyses of Sequence and Parent-of-Origin Dependent DNA Methylation in the Mouse Genome. Cell. 2012;148(4):816–831.
  • Varley KE, Gertz J, Bowling KM, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–567.
  • Lister R, Mukamel EA, Nery JR, et al. Global Epigenomic Reconfiguration During Mammalian Brain Development. Science. 2013;341(6146):1237905.
  • Huttenlocher PR, Dabholkar AS. Regional Differences in Synaptogenesis in Human Cerebral Cortex. J Comp Neurol. 1997;387(2):167–178.
  • De Felipe J, Marco P, Fairén A, Jones EG. Inhibitory Synaptogenesis in Mouse Somatosensory Cortex. Cereb Cortex. 1997;7(7):619–634.
  • Shahbazian MD, Antalffy BA, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: meCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002;11(2):115–124.
  • Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. Cell. 2011;145(3):423–434.
  • Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science. 2009;324(5929):930–935.
  • Globisch D, Münzel M, Müller M, et al. Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates. PLoS One. 2010;5(12):e15367.
  • Kriaucionis S, Heintz N. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science. 2009;324(5929):929–930.
  • Mellén M, Ayata P, Dewell S, Kriaucionis S, MeCP2 HN. Binds to 5hmC Enriched within Active Genes and Accessible Chromatin in the Nervous System. Cell. 2012;151(7):1417–1430.
  • Mellén M, Ayata P, Heintz N. 5-Hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes. PNAS. 2017;114(37):E7812–E7821.
  • Lewis JD, Meehan RR, Henzel WJ, et al. Purification, Sequence, and Cellular Localization of a Novel Chromosomal Protein That Binds to Methylated DNA. Cell. 1992;69(6):905–914.
  • Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 1993;21(21):4886–4892.
  • Guo JU, Su Y, Shin JH, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17(2):215–222.
  • Chen L, Chen K, Lavery LA, Andrew S, Shaw CA, MeCP2 LW. binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. PNAS. 2015;112(17):5509–5514.
  • Gabel HW, Kinde B, Stroud H, et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522(7554):89–93.
  • Ho KL, McNae IW, Schmiedeberg L, Klose RJ, Bird AP, Walkinshaw MD. MeCP2 Binding to DNA Depends upon Hydration at Methyl-CpG. Mol Cell. 2008;29(4):525–531.
  • Wakefield RID, Smith BO, Nan X, et al. The Solution Structure of the Domain from MeCP2 that Binds to Methylated DNA. J Mol Biol. 1999;291(5):1055–1065.
  • Nan X, Campoy FJ, MeCP2 BA. is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88(4):471–481.
  • Lyst MJ, Ekiert R, Ebert DH, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci. 2013;16(7):898–902.
  • Kruusvee V, Lyst MJ, Taylor C, Tarnauskaite Z, Bird AP, Cook AG. Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc Natl Acad Sci. 2017;114(16):E3243–E3250.
  • Jones PL, Veenstra GJC, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19(2):187–191.
  • Nan X, Ng H, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–389.
  • Kokura K, Kaul SC, Wadhwa R, et al. The Ski Protein Family Is Required for MeCP2-mediated Transcriptional Repression. J Biol Chem. 2001;276(36):34115–34121. doi:10.1074/jbc.M105747200
  • Nan X, Hou J, Maclean A, et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. PNAS. 2007;104(8):2709–2714.
  • Kernohan KD, Jiang Y, Tremblay DC, et al. ATRX Partners with Cohesin and MeCP2 and Contributes to Developmental Silencing of Imprinted Genes in the Brain. Dev Cell. 2010;18(2):191–202. doi:10.1016/j.devcel.2009.12.017
  • Kernohan KD, Vernimmen D, Gloor GB, Bérubé NG. Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping. Nucleic Acids Res. 2014;42(13):8356–8368. doi:10.1093/nar/gku564
  • Harikrishnan KN, Chow MZ, Baker EK, et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet. 2005;37(3):254–264. doi:10.1038/ng1516
  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The Methyl-CpG-Binding Protein MeCP2 Links DNA Methylation to Histone Methylation. J Biol Chem. 2003;278(6):4035–4040. doi:10.1074/jbc.M210256200
  • Zhou J, Hamdan H, Yalamanchili HK, et al. Disruption of MeCP2-TCF20 complex underlies distinct neurodevelopmental disorders. PNAS. 2022;119(4):e2119078119.
  • Young JI, Hong EP, Castle JC, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. PNAS. 2005;102(49):17551–17558.
  • Chahrour M, Jung SY, Shaw C, et al. MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription. Science. 2008;320(5880):1224–1229.
  • Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet. 2009;18(13):2431–2442.
  • Li Y, Wang H, Muffat J, et al. Global Transcriptional and Translational Repression in Human-Embryonic-Stem-Cell-Derived Rett Syndrome Neurons. Cell Stem Cell. 2013;13(4):446–458.
  • Adams VH, McBryant SJ, Wade PA, Woodcock CL, Hansen JC, Disorder I. Autonomous Domain Function in the Multifunctional Nuclear Protein, MeCP2. J Biol Chem. 2007;282(20):15057–15064.
  • Ghosh RP, Nikitina T, Horowitz-Scherer RA, et al. Unique Physical Properties and Interactions of the Domains of Methylated DNA Binding Protein 2. Biochemistry. 2010;49(20):4395–4410.
  • Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 1998;26(19):4413–4421.
  • Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY. An AT-hook Domain in MeCP2 Determines the Clinical Course of Rett Syndrome and Related Disorders. Cell. 2013;152(5):984–996. doi:10.1016/j.cell.2013.01.038
  • Lyst MJ, Connelly J, Merusi C, Bird BA. Sequence-specific DNA binding by AT-hook motifs in MeCP2. FEBS Lett. 2016;590(17):2927–2933. doi:10.1002/1873-3468.12328
  • Kishi N, Macklis JD. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci. 2004;27(3):306–321. doi:10.1016/j.mcn.2004.07.006
  • Ross PD, Guy J, Selfridge J, et al. Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Hum Mol Genet. 2016;25(20):4389–4404. doi:10.1093/hmg/ddw269
  • Skene PJ, Illingworth RS, Webb S, et al. Neuronal MeCP2 Is Expressed at Near Histone-Octamer Levels and Globally Alters the Chromatin State. Mol Cell. 2010;37(4):457–468. doi:10.1016/j.molcel.2010.01.030
  • Ibrahim A, Papin C, Mohideen-Abdul K, et al. MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion. Science. 2021;372(6549):eabd5581.
  • Yasui DH, Peddada S, Bieda MC, et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. PNAS. 2007;104(49):19416–19421.
  • Boxer LD, Renthal W, Greben AW, et al. MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes. Mol Cell. 2020;77(2):294–309.
  • Clemens AW, Wu DY, Moore JR, Christian DL, Zhao G, Gabel HW. MeCP2 Represses Enhancers through Chromosome Topology-Associated DNA Methylation. Mol Cell. 2020;77(2):279–293.
  • Zhou Z, Hong EJ, Cohen S, et al. Brain-specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. Neuron. 2006;52(2):255–269.
  • Ebert DH, Gabel HW, Robinson ND, et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature. 2013;499(7458):341–345.
  • Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC. Chromatin Compaction by Human MeCP2. J Biol Chem. 2003;278(34):32181–32188.
  • Ghosh RP, Horowitz-Scherer RA, Nikitina T, Shlyakhtenko LS, Woodcock CL. MeCP2 Binds Cooperatively to Its Substrate and Competes with Histone H1 for Chromatin Binding Sites. Mol Cell Biol. 2010;30(19):4656–4670.
  • Mnatzakanian GN, Lohi H, Munteanu I, et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet. 2004;36(4):339–341. doi:10.1038/ng1327
  • Kriaucionis S, Bird A. The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res. 2004;32(5):1818–1823. doi:10.1093/nar/gkh349
  • Coy JF, Sedlacek Z, Bächner D, Delius H, Poustka A. A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3’-untranslated region of the methyl-CpG-binding protein 2 gene (MeCP2) suggests a regulatory role in gene expression. Hum Mol Genet. 1999;8(7):1253–1262. doi:10.1093/hmg/8.7.1253
  • Dragich JM, Kim Y-H, Arnold AP, Schanen NC. Differential Distribution of the Mecp2 Splice Variants in the Postnatal Mouse Brain. J Comp Neurol. 2007;501(4):526–542. doi:10.1002/cne
  • Zappella M, Meloni I, Longo I, et al. Study of MECP2 Gene in Rett Syndrome Variants and Autistic Girls. Am J Med Genet. 2003;119B(1):102–107.
  • Mount RH, Charman T, Hasting RP, Reilly S, Cass H. Features of Autism in Rett Syndrome and Severe Mental Retardation. J Autism Dev Disord. 2003;33(4):435–442.
  • Carney RM, Wolpert CM, Ravan SA, et al. Identification of MeCP2 Mutations in a Series of Females with Autistic Disorder. Pediatr Neurol. 2003;28(3):205–211.
  • Shibayama A, Cook EH, Feng J, et al. MECP2 Structural and 3′-UTR Variants in Schizophrenia, Autism and Other Psychiatric Diseases: a Possible Association with Autism. Am J Med Genet. 2004;128B(1):50–53.
  • Hitchins MP, Rickard S, Dhalla F, et al. Investigation of UBE3A and MECP2 in Angelman syndrome (AS) and Patients With Features of AS. Am J Med Genet. 2004;125A(2):167–172.
  • Watson P, Black G, Ramsden S, et al. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J Med Genet. 2001;38(4):224–228.
  • Couvert P, Bienvenu T, Aquaviva C, et al. MECP2 is highly mutated in X-linked mental retardation. Hum Mol Genet. 2001;10(9):941–946.
  • Amir RE, Fang P, Yu Z, et al. Mutations in exon 1 of MECP2 are a rare cause of Rett syndrome. J Med Genet. 2005;42(2):e15. doi:10.1136/jmg.2004.026161
  • Saunders CJ, Minassian BE, Chow EWC, Zhao W, Vincent JB, Exon N. 1 Mutations in MECP2 Implicate Isoform MeCP2_e1 in Classical Rett Syndrome. Am J Med Genet Part A. 2009;149A:1019–1023.
  • Kerr B, Soto CJ, Saez M, Abrams A, Walz K, Young JI. Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet. 2012;20(1):69–76. doi:10.1038/ejhg.2011.145
  • Lyon MF. Gene Action in the X-chromosome of the Mouse (Mus musculus L.). Nature. 1961;190:372–373.
  • Young JI, Zoghbi HY. X-Chromosome Inactivation Patterns Are Unbalanced and Affect the Phenotypic Outcome in a Mouse Model of Rett Syndrome. Am J Hum Genet. 2004;74(3):511–520.
  • Enikanolaiye A, Ruston J, Zeng R, et al. Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology. Genome Res. 2020;30(4):540–552.
  • Achilly NP, Wang W, Zoghbi HY. Presymptomatic training mitigates functional deficits in Rett syndrome mice. Nature. 2021;592(7855):596–600.
  • Downs J, Rodger J, Li C, et al. Environmental enrichment intervention for Rett syndrome: an individually randomised stepped wedge trial. Orphanet J Rare Dis. 2018;13(1):3.
  • Suter B, Treadwell-Deering D, Zoghbi HY, Glaze DG, Neul JL. MECP2 Mutations in People without Rett Syndrome. J Autism Dev Disord. 2014;44(3):703–711.
  • Brown K, Selfridge J, Lagger S, et al. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Hum Mol Genet. 2016;25(3):558–570.
  • Merritt JK, Collins BE, Erickson KR, Dong H, Neul JL. Pharmacological read-through of R294X Mecp2 in a novel mouse model of Rett syndrome. Hum Mol Genet. 2020;29(15):2461–2470.
  • Guy J, Alexander-Howden B, Fitzpatrick L, et al. A mutation-led search for novel functional domains in MeCP2. Hum Mol Genet. 2018;27(14):2531–2545.
  • Nikitina T, Shi X, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Woodcock CL. Multiple Modes of Interaction between the Methylated DNA Binding Protein MeCP2 and Chromatin. Mol Cell Biol. 2007;27(3):864–877.
  • Pietri T, Roman AC, Guyon N, et al. The first mecp2-null zebrafish model shows altered motor behaviors. Front Neural Circuits. 2013;7(118):1–10. doi:10.3389/fncir.2013.00118
  • Chen Y, Yu J, Niu Y, et al. Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys. Cell. 2017;169(5):945–955. doi:10.1016/j.cell.2017.04.035
  • Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27(3):327–331.
  • Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001;27(3):322–326.
  • Lioy DT, Garg SK, Monaghan CE, et al. A role for glia in the progression of Rett’s syndrome. Nature. 2011;475(7357):497–500.
  • Cronk JC, Derecki NC, Ji E, et al. Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli. Immunity. 2015;42(4):679–691.
  • Wang J, Wegener E, Huang T-W, et al. Wild-type microglia do not reverse pathology in a mouse models of Rett syndrome. Nature. 2015;521(7552):E1–E4.
  • McGraw CM, Samaco RC, Zoghbi HY. Adult neural function requires MeCP2. Science. 2011;333(6039):186.
  • Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of Neurological Defects in a Mouse Model of Rett Syndrome. Science. 2007;315(5815):1143–1147.
  • Robinson L, Guy J, McKay L, et al. Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain. 2012;135(9):2699–2710.
  • Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM. Postnatal Loss of Methyl-CpG Binding Protein 2 in the Forebrain is Sufficient to Mediate Behavioral Aspects of Rett Syndrome in Mice. Biol Psychiatry. 2006;59(5):468–476.
  • Su S-H, Kao F-C, Huang Y-B LW. MeCP2 in the Rostral Striatum Maintains Local Dopamine Content Critical for Psychomotor Control. J Neurosci. 2015;35(15):6209–6220.
  • Fyffe SL, Neul JL, Samaco RC, et al. Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress. Neuron. 2008;59(6):947–958.
  • Achilly NP, He LJ, Kim OA, et al. Deleting Mecp2 from the cerebellum rather than its neuronal subtypes causes a delay in motor learning in mice. Elife. 2021;10:e64833.
  • Meng X, Wang W, Lu H, et al. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. Elife. 2016;5:e14199.
  • Chao H-T, Chen H, Samaco RC, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468(7321):263–269.
  • Samaco RC, Mandel-Brehm C, Chao HT, et al. Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. PNAS. 2009;106(51):21966–21971.
  • Ito-Ishida A, Ure K, Chen H, Swann JW, Zoghbi HY. Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes. Neuron. 2015;88(4):651–658.
  • Heckman LD, Chahrour MH, Zoghbi HY. Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice. Elife. 2014;3:e02676.
  • Rangasamy S, Olfers S, Gerald B, Hilbert A, Svejda S, Narayanan V. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model. F1000Research. 2016;5(2269):1–16.
  • Johnson B, Zhao Y, Fasolino M, et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat Med. 2017;23(10):1203–1214.
  • Goffin D, Allen M, Zhang L, et al. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat Neurosci. 2012;15(2):274–283.
  • Wegener E, Brendel C, Fischer A, Hülsmann S, Gärtner J, Huppke P. Characterization of the MeCP2R168X Knockin Mouse Model for Rett Syndrome. PLoS One. 2014;9(12):e115444.
  • Pitcher MR, Herrera JA, Buffington SA, et al. Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene. Hum Mol Genet. 2015;24(9):2662–2672.
  • Brendel C, Belakhov V, Werner H, et al. Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model. J Mol Med. 2011;89(4):389–398.
  • Ghosh RP, Horowitz-Scherer RA, Nikitina T, Gierasch LM, Woodcock CL. Rett Syndrome-causing Mutations in Human MeCP2 Result in Diverse Structural Changes That Impact Folding and DNA Interactions. J Biol Chem. 2008;283(29):20523–20534.
  • Asaka Y, Jugloff DGM, Zhang L, Eubanks JH, Fitzsimonds RM. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis. 2006;21(1):217–227.
  • Moretti P, Levenson JM, Battaglia F, et al. Learning and Memory and Synaptic Plasticity are Impaired in a Mouse Model of Rett Syndrome. J Neurosci. 2006;26(1):319–327.
  • Nelson ED, Bal M, Kavalali ET, Monteggia LM. Selective impact of MeCP2 and associated histone deacetylases on the dynamics of evoked excitatory neurotransmission. J Neurophysiol. 2011;106(1):193–201.
  • Na ES, Nelson ED, Kavalali ET, Monteggia LM. The Impact of MeCP2 Loss-or Gain-of-Function on Synaptic Plasticity. Neuropsychopharmacology. 2013;38(1):212–219.
  • Liu L, Wong TP, Pozza MF, et al. Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity. Science. 2004;304(5673):1021–1024.
  • Qiu Z, Sylwestrak EL, Lieberman DN, Zhang Y, Liu XY, Ghosh A. The Rett Syndrome Protein MeCP2 Regulates Synaptic Scaling. J Neurosci. 2012;32(3):989–994.
  • Blackman MP, Djukic B, Nelson SB, Turrigiano GG. A critical and cell-autonomous role for MeCP2 in synaptic scaling up. J Neurosci. 2012;32(39):13529–13536.
  • Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto YI. Delayed Maturation of Neuronal Architecture and Synaptogenesis in Cerebral Cortex of Mecp2-Deficient Mice. J Neuropathol Exp Neurol. 2005;64(6):537–544.
  • Marchetto MCN, Carromeu C, Acab A, et al. A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells. Cell. 2010;143(4):527–539.
  • Chapleau CA, Calfa GD, Lane MC, et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis. 2010;35(2):219–233.
  • Schüle B, Armstrong DD, Vogel H, Oviedo A, Francke U. Severe congenital encephalopathy caused by MECP2 null mutations in males: central hypoxia and reduced neuronal dendritic structure. Clin Genet. 2008;74(2):116–126.
  • Luikenhuis S, Giacometti E, Beard CF, Jaenisch R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. PNAS. 2004;101(16):6033–6038.
  • Na ES, Nelson ED, Adachi M, et al. A Mouse Model for MeCP2 Duplication Syndrome: meCP2 Overexpression Impairs Learning and Memory and Synaptic Transmission. J Neurosci. 2012;32(9):3109–3117.
  • Sztainberg Y, Chen H, Swann JW, et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature. 2015;528(7580):123–126.
  • Samaco RC, Mandel-Brehm C, McGraw CM, Shaw CA, McGill BE, Zoghbi HY. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet. 2012;44(2):206–211.
  • Yu B, Yuan B, Dai J-K, et al. Reversal of Social Recognition Deficit in Adult Mice with MECP2 Duplication via Normalization of MeCP2 in the Medial Prefrontal Cortex. Neurosci Bull. 2020;36(6):570–584.
  • Na ES, Morris MJ, Nelson ED, Monteggia LM. GABAa Receptor Antagonism Ameliorates Behavioral and Synaptic Impairments Associated with MeCP2 Overexpression. Neuropsychopharmacology. 2014;39(8):1946–1954.
  • Chao HT, Zoghbi HY, MeCP2 RC. Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number. Neuron. 2007;56(1):58–65.
  • Nageshappa S, Carromeu C, Trujillo CA, et al. Altered neuronal network and rescue in a human MECP2 duplication model. Mol Psychiatry. 2016;21(2):178–188.
  • Jiang M, Ash RT, Baker SA, et al. Dendritic Arborization and Spine Dynamics are Abnormal in the Mouse Model of MECP2 Duplication Syndrome. J Neurosci. 2013;33(50):19518–19533.
  • Ash RT, Fahey PG, Park J, Zoghbi HY, Smirnakis SM. Increased axonal bouton stability during learning in the mouse model of MECP2 duplication syndrome. eNeuro. 2018;5(3):ENEURO.0056–17.2018.
  • Ash RT, Park J, Suter B, Smirnakis SM, Zoghbi HY. Excessive formation and stabilization of dendritic spine clusters in the mecp2-duplication syndrome mouse model of autism. eNeuro. 2021;8(1):ENEURO.0282–20.2020.
  • Ash RT, Buffington SA, Park J, et al. Inhibition of Elevated Ras-MAPK Signaling Normalizes Enhanced Motor Learning and Excessive Clustered Dendritic Spine Stabilization in the MECP2-Duplication Syndrome Mouse Model of Autism. eNeuro. 2021;8(4):ENEURO.0056–21.2021.
  • Glaze DG, Percy AK, Motil KJ, et al. A Study of the Treatment of Rett Syndrome With Folate and Betaine. J Child Neurol. 2009;24(5):551–556.
  • Renthal W, Boxer LD, Hrvatin S, et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat Neurosci. 2018;21(12):1670–1679.
  • Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The Disease Progression of Mecp2 Mutant Mice Is Affected by the Level of BDNF Expression. Neuron. 2006;49(3):341–348.
  • Ogier M, Wang H, Hong E, Wang Q, Greenberg ME, Katz DM. Brain-Derived Neurotrophic Factor Expression and Respiratory Function Improve After Ampakine Treatment in a Mouse Model of Rett Syndrome. J Neurosci. 2007;27(40):10912–10917.
  • Deogracias R, Yazdani M, Dekkers MPJ, et al. Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. PNAS. 2012;109(35):14230–14235.
  • Naegelin Y, Kuhle J, Schädelin S, et al. Fingolimod in children with Rett syndrome: the FINGORETT study. Orphanet J Rare Dis. 2021;16(1):19.
  • D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol. 1996;13(3):227–255.
  • Zheng W, Quirion R. Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem. 2004;89(4):844–852.
  • O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci. 2000;20(22):8435–8442.
  • Tropea D, Giacometti E, Wilson NR, et al. Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci. 2009;106(6):2029–2034.
  • Glaze DG, Neul JL, Percy A, et al. A Double-Blind, Randomized, Placebo-Controlled Clinical Study of Trofinetide in the Treatment of Rett Syndrome. Pediatr Neurol. 2017;76:37–46.
  • Glaze DG, Neul JL, Kaufmann WE, et al. Double-blind, randomized, placebo-controlled study of trofinetide in pediatric Rett syndrome. Neurology. 2019;92(16):e1912–e1925.
  • Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475(7354):91–96.
  • Kron M, Howell CJ, Adams IT, et al. Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment. J Neurosci. 2012;32(40):13860–13872.
  • Patrizi A, Picard N, Simon AJ, Gunner G, Andrews NA, Fagiolini M. Chronic administration of the N-methyl-D-aspartate receptor antagonist ketamine improves Rett syndrome phenotype. Biol Psychiatry. 2016;79(9):755–764.
  • Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad. 2004;101(Suppl 2):14593–14598. doi:10.1073/pnas.0404887101
  • Ziemssen T, Kümpfel T, Klinkert WEF, Neuhaus O, Hohlfeld R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain. 2002;125(11):2381–2391. doi:10.1093/brain/awf252
  • Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad. 2003;100(24):14157–14162. doi:10.1073/pnas.2336171100
  • Djukic A, Holtzer R, Shinnar S, et al. Pharmacologic Treatment of Rett Syndrome With Glatiramer Acetate. Pediatr Neurol. 2016;61(2016):51–57. doi:10.1016/j.pediatrneurol.2016.05.010
  • Nissenkorn A, Kidon M, Ben-Zeev B, Potential Life-Threatening A. Reaction to Glatiramer Acetate in Rett Syndrome. Pediatr Neurol. 2017;68(2017):40–43. doi:10.1016/j.pediatrneurol.2016.11.006
  • Lombardi LM, Baker SA, Zoghbi HY. MECP2 disorders: from the clinic to mice and back. J Clin Invest. 2015;125(8):2914–2923.
  • Garg SK, Lioy DT, Cheval H, et al. Systemic Delivery of MeCP2 Rescues Behavioral and Cellular Deficits in Female Mouse Models of Rett Syndrome. J Neurosci. 2013;33(34):13612–13620.
  • Gadalla KK, Bailey ME, Spike RC, et al. Improved Survival and Reduced Phenotypic Severity Following AAV9/MECP2 Gene Transfer to Neonatal and Juvenile Male Mecp2 Knockout Mice. Mol Ther. 2013;21(1):18–30.
  • Gadalla KKE, Vudhironarit T, Hector RD, et al. Development of a Novel AAV Gene Therapy Cassette with Improved Safety Features and Efficacy in a Mouse Model of Rett Syndrome. Mol Ther. 2017;5:180–190.
  • Sinnett SE, Hector RD, Gadalla KKE, et al. Improved MECP2 Gene Therapy Extends the Survival of MeCP2-Null Mice without Apparent Toxicity after Intracisternal Delivery. Mol Ther. 2017;5:106–115.
  • Matagne V, Ehinger Y, Saidi L, et al. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol Dis. 2017;99:1–11.
  • Matagne V, Borloz E, Ehinger Y, Saidi L, Villard L, Roux J-C. Severe off target effects following intravenous delivery of AAV9-MECP2 in a female mouse model of Rett syndrome. Neurobiol Dis. 2021;149:105235.
  • Przanowski P, Wasko U, Zheng Z, et al. Pharmacological reactivation of inactive X-linked Mecp2 in cerebral cortical neurons of living mice. PNAS. 2018;115(31):7991–7996.
  • Huong Le TT, Tran NT, Lan Dao TM, et al. Efficient and Precise CRISPR/Cas9-Mediated MECP2 Modifications in Human-Induced Pluripotent Stem Cells. Front Genet. 2019;10:625.
  • Sinnamon JR, Kim SY, Corson GM, et al. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. PNAS. 2017;114(44):E9395–E9402.
  • Sinnamon JR, Kim SY, Fisk JR, et al. In Vivo Repair of a Protein Underlying a Neurological Disorder by Programmable RNA Editing. Cell Rep. 2020;32(2):107878.
  • Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14(1):9–21. doi:10.1038/nrneurol.2017.148
  • Shao Y, Sztainberg Y, Wang Q, et al. Antisense oligonucleotide therapy in a humanized mouse model of MECP2 duplication syndrome. Sci Transl Med. 2021;13(583):eaaz7785. doi:10.1126/scitranslmed.aaz7785
  • Samaco RC, Mcgraw CM, Ward CS, Sun Y, Neul JL, Zoghbi HY. Female Mecp2± mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum Mol Genet. 2013;22(1):96–109.
  • Lawson-Yuen A, Liu D, Han L, et al. Ube3a mRNA and protein expression are not decreased in Mecp2R168X mutant mice. Brain Res. 2007;1180(1):1–6. doi:10.1016/j.brainres.2007.08.039
  • Shahbazian MD, Young JI, Yuva-Paylor LA, et al. Mice with Truncated MeCP2 Recapitulate Many Rett Syndrome Features and Display Hyperacetylation of Histone H3. Neuron. 2002;35(2):243–254.