487
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Endo-Lysosomal and Autophagy Pathway and Ubiquitin-Proteasome System in Mood Disorders: A Review Article

ORCID Icon, ORCID Icon & ORCID Icon
Pages 133-151 | Received 09 Aug 2022, Accepted 08 Dec 2022, Published online: 14 Jan 2023

References

  • Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. Nat Rev Dis Primers. 2016;2:16065. doi:10.1038/nrdp.2016.65
  • Vieta E, Berk M, Schulze TG, et al. Bipolar disorders. Nat Rev Dis Primers. 2018;4:18008. doi:10.1038/nrdp.2018.8
  • Gloger S, Vohringer PA, Martinez P, et al. The contribution of early adverse stress to complex and severe depression in depressed outpatients. Depress Anxiety. 2021;38(4):431–438. doi:10.1002/da.23144
  • Rowland TA, Marwaha S. Epidemiology and risk factors for bipolar disorder. Ther Adv Psychopharmacol. 2018;8(9):251–269. doi:10.1177/2045125318769235
  • Shadrina M, Bondarenko EA, Slominsky PA. Genetics factors in major depression disease. Front Psychiatry. 2018;9:334. doi:10.3389/fpsyt.2018.00334
  • Gandal MJ, Zhang P, Hadjimichael E, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362(6420). doi:10.1126/science.aat8127
  • Muneer A. Bipolar disorder: role of inflammation and the development of disease biomarkers. Psychiatry Investig. 2016;13(1):18–33. doi:10.4306/pi.2016.13.1.18
  • Kim Y-K, Na K-S, Myint A-M, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:277–284. doi:10.1016/j.pnpbp.2015.06.008
  • Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 2018;98(3):466–481.
  • Kim Y, Vadodaria KC, Lenkei Z, et al. Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal. 2019;31(4):275–317. doi:10.1089/ars.2018.7606
  • Hroudova J, Fisar Z. Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin Neurosci. 2011;65(2):130–141. doi:10.1111/j.1440-1819.2010.02178.x
  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi:10.1101/cshperspect.a028035
  • Cao J, Zhong MB, Toro CA, Zhang L, Cai D. Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer’s disease pathogenesis. Neurosci Lett. 2019;703:68–78. doi:10.1016/j.neulet.2019.03.016
  • Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol. 2013;105:49–59. doi:10.1016/j.pneurobio.2013.03.001
  • Cummings J, Lee G, Zhong K, Fonseca J, Taghva K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement. 2021;7(1):e12179.
  • Nascimento C, Nunes VP, Diehl Rodriguez R, et al. A review on shared clinical and molecular mechanisms between bipolar disorder and frontotemporal dementia. Prog Neuropsychopharmacol Biol Psychiatry. 2019;93:269–283. doi:10.1016/j.pnpbp.2019.04.008
  • Richmond-Rakerd LS, D’Souza S, Milne BJ, Caspi A, Moffitt TE. Longitudinal associations of mental disorders with dementia: 30-year analysis of 1.7 million New Zealand citizens. JAMA Psychiatry. 2022;79(4):333–340. doi:10.1001/jamapsychiatry.2021.4377
  • Whyte LS, Lau AA, Hemsley KM, Hopwood JJ, Sargeant TJ. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease? J Neurochem. 2017;140(5):703–717. doi:10.1111/jnc.13935
  • Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156(4):825–835. doi:10.1016/j.cell.2013.12.042
  • McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014;33(4):282–295. doi:10.1002/embj.201385902
  • Raimundo N, Fernandez-Mosquera L, Yambire KF, Diogo CV. Mechanisms of communication between mitochondria and lysosomes. Int J Biochem Cell Biol. 2016;79:345–349. doi:10.1016/j.biocel.2016.08.020
  • Baixauli F, Acin-Perez R, Villarroya-Beltri C, et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 2015;22(3):485–498. doi:10.1016/j.cmet.2015.07.020
  • Demers-Lamarche J, Guillebaud G, Tlili M, et al. Loss of mitochondrial function impairs lysosomes. J Biol Chem. 2016;291(19):10263–10276. doi:10.1074/jbc.M115.695825
  • Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF. Mitophagy and neuroprotection. Trends Mol Med. 2020;26(1):8–20. doi:10.1016/j.molmed.2019.07.002
  • Palikaras K, Tavernarakis N. Regulation and roles of mitophagy at synapses. Mech Ageing Dev. 2020;187:111216. doi:10.1016/j.mad.2020.111216
  • Kerr JS, Adriaanse BA, Greig NH, et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151–166. doi:10.1016/j.tins.2017.01.002
  • Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013–1022. doi:10.1038/s41556-018-0176-2
  • Andreazza AC, Young LT. The neurobiology of bipolar disorder: identifying targets for specific agents and synergies for combination treatment. Int J Neuropsychopharmacol. 2014;17(7):1039–1052. doi:10.1017/S1461145713000096
  • Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47(1):1–7. doi:10.1176/appi.psy.47.1.1
  • Gimenez-Palomo A, Dodd S, Anmella G, et al. The role of mitochondria in mood disorders: from physiology to pathophysiology and to treatment. Front Psychiatry. 2021;12:546801. doi:10.3389/fpsyt.2021.546801
  • Wang Q, Dwivedi Y. Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder. World J Biol Psychiatry. 2017;18(8):592–603. doi:10.1080/15622975.2016.1197423
  • Cyrino LAR, Delwing-de lima D, Ullmann OM, Maia TP. Concepts of neuroinflammation and their relationship with impaired mitochondrial functions in bipolar disorder. Front Behav Neurosci. 2021;15:609487. doi:10.3389/fnbeh.2021.609487
  • Kuperberg M, Greenebaum SLA, Nierenberg AA. Targeting mitochondrial dysfunction for bipolar disorder. Curr Top Behav Neurosci. 2021;48:61–99.
  • Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion. 2021;57:23–36. doi:10.1016/j.mito.2020.12.002
  • Scaini G, Fries GR, Valvassori SS, et al. Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients. Transl Psychiatry. 2017;7(5):e1111. doi:10.1038/tp.2017.83
  • Yamaki N, Otsuka I, Numata S, et al. Mitochondrial DNA copy number of peripheral blood in bipolar disorder: the present study and a meta-analysis. Psychiatry Res. 2018;269:115–117. doi:10.1016/j.psychres.2018.08.014
  • Chung JK, Lee SY, Park M, Joo EJ, Kim SA. Investigation of mitochondrial DNA copy number in patients with major depressive disorder. Psychiatry Res. 2019;282:112616. doi:10.1016/j.psychres.2019.112616
  • Scaini G, Mason BL, Diaz AP, et al. Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: does inflammation play a role? Mol Psychiatry. 2022;27(2):1095–1102. doi:10.1038/s41380-021-01312-w
  • Hahn CG, Gomez G, Restrepo D, et al. Aberrant intracellular calcium signaling in olfactory neurons from patients with bipolar disorder. Am J Psychiatry. 2005;162(3):616–618. doi:10.1176/appi.ajp.162.3.616
  • Mertens J, Wang QW, Kim Y, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527(7576):95–99. doi:10.1038/nature15526
  • Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and parkin. J Cell Biol. 2014;206(5):655–670. doi:10.1083/jcb.201401070
  • Evans CS, Holzbaur ELF. Autophagy and mitophagy in ALS. Neurobiol Dis. 2019;122:35–40. doi:10.1016/j.nbd.2018.07.005
  • Scaini G, Barichello T, Fries GR, et al. TSPO upregulation in bipolar disorder and concomitant downregulation of mitophagic proteins and NLRP3 inflammasome activation. Neuropsychopharmacology. 2019;44(7):1291–1299. doi:10.1038/s41386-018-0293-4
  • Li D, Zheng J, Wang M, et al. Changes of TSPO-mediated mitophagy signaling pathway in learned helplessness mice. Psychiatry Res. 2016;245:141–147. doi:10.1016/j.psychres.2016.02.068
  • Uddin MS, Stachowiak A, Mamun AA, et al. Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci. 2018;10:4. doi:10.3389/fnagi.2018.00004
  • Song X, Liu B, Cui L, et al. Silibinin ameliorates anxiety/depression-like behaviors in amyloid beta-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus. Physiol Behav. 2017;179:487–493. doi:10.1016/j.physbeh.2017.07.023
  • Jia J, Le W. Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci Bull. 2015;31(4):427–434. doi:10.1007/s12264-015-1548-2
  • Sato M, Ueda E, Konno A, et al. Glucocorticoids negatively regulates chaperone mediated autophagy and microautophagy. Biochem Biophys Res Commun. 2020;528(1):199–205. doi:10.1016/j.bbrc.2020.04.132
  • He S, Deng Z, Li Z, et al. Signatures of 4 autophagy-related genes as diagnostic markers of MDD and their correlation with immune infiltration. J Affect Disord. 2021;295:11–20. doi:10.1016/j.jad.2021.08.005
  • Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107(2):234–256. doi:10.1016/j.neuron.2020.06.002
  • Kim YM, Jung CH, Seo M, et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell. 2015;57(2):207–218. doi:10.1016/j.molcel.2014.11.013
  • Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 2014;7:28. doi:10.3389/fnmol.2014.00028
  • Park SW, Seo MK, Webster MJ, Lee JG, Kim S. Differential expression of gene co-expression networks related to the mTOR signaling pathway in bipolar disorder. Transl Psychiatry. 2022;12(1):184. doi:10.1038/s41398-022-01944-8
  • Vanderplow AM, Eagle AL, Kermath BA, Bjornson KJ, Robison AJ, Cahill ME. Akt-mTOR hypoactivity in bipolar disorder gives rise to cognitive impairments associated with altered neuronal structure and function. Neuron. 2021;109(9):1479–1496 e1476. doi:10.1016/j.neuron.2021.03.008
  • Pierone BC, Pereira CA, Garcez ML, Kaster MP. Stress and signaling pathways regulating autophagy: from behavioral models to psychiatric disorders. Exp Neurol. 2020;334:113485. doi:10.1016/j.expneurol.2020.113485
  • Schreij AM, Fon EA, McPherson PS. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci. 2016;73(8):1529–1545. doi:10.1007/s00018-015-2105-x
  • Vagnozzi AN, Pratico D. Endosomal sorting and trafficking, the retromer complex and neurodegeneration. Mol Psychiatry. 2019;24(6):857–868. doi:10.1038/s41380-018-0221-3
  • Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10. doi:10.1016/j.semcdb.2014.03.034
  • Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208. doi:10.1007/s00018-017-2595-9
  • Lutz MW, Sprague D, Barrera J, Chiba-Falek O. Shared genetic etiology underlying Alzheimer’s disease and major depressive disorder. Transl Psychiatry. 2020;10(1):88. doi:10.1038/s41398-020-0769-y
  • Pimenova AA, Raj T, Goate AM. Untangling genetic risk for Alzheimer’s disease. Biol Psychiatry. 2018;83(4):300–310. doi:10.1016/j.biopsych.2017.05.014
  • Cataldo AM, Barnett JL, Berman SA, et al. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron. 1995;14(3):671–680. doi:10.1016/0896-6273(95)90324-0
  • Zhou R, Lu Y, Han Y, et al. Mice heterozygous for cathepsin D deficiency exhibit mania-related behavior and stress-induced depression. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:110–118. doi:10.1016/j.pnpbp.2015.06.007
  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. doi:10.1146/annurev-biochem-013118-111902
  • Baixauli F, Lopez-Otin C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:403. doi:10.3389/fimmu.2014.00403
  • Desdin-Mico G, Mittelbrunn M. Role of exosomes in the protection of cellular homeostasis. Cell Adh Migr. 2017;11(2):127–134. doi:10.1080/19336918.2016.1251000
  • Xu J, Camfield R, Gorski SM. The interplay between exosomes and autophagy - partners in crime. J Cell Sci. 2018;131(15). doi:10.1242/jcs.215210
  • Saeedi S, Israel S, Nagy C, Turecki G. The emerging role of exosomes in mental disorders. Transl Psychiatry. 2019;9(1):122. doi:10.1038/s41398-019-0459-9
  • Sohel MH. Extracellular/circulating MicroRNAs: release mechanisms, functions and challenges. Achieve Life Sci. 2016;10(2):175–186. doi:10.1016/j.als.2016.11.007
  • Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV. The missing link: how exosomes and miRNAs can help in bridging psychiatry and molecular biology in the context of depression, bipolar disorder and schizophrenia. Cell Mol Neurobiol. 2019;39(6):729–750. doi:10.1007/s10571-019-00684-6
  • Wei ZX, Xie GJ, Mao X, et al. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology. 2020;45(6):1050–1058. doi:10.1038/s41386-020-0622-2
  • Liang JQ, Liao HR, Xu CX, et al. Serum exosome-derived miR-139-5p as a potential biomarker for major depressive disorder. Neuropsychiatr Dis Treat. 2020;16:2689–2693. doi:10.2147/NDT.S277392
  • Fries GR, Lima CNC, Valvassori SS, Zunta-Soares G, Soares JC, Quevedo J. Preliminary investigation of peripheral extracellular vesicles’ microRNAs in bipolar disorder. J Affect Disord. 2019;255:10–14. doi:10.1016/j.jad.2019.05.020
  • Banigan MG, Kao PF, Kozubek JA, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One. 2013;8(1):e48814. doi:10.1371/journal.pone.0048814
  • Fries GR, Quevedo J. Exosomal MicroRNAs as potential biomarkers in neuropsychiatric disorders. Methods Mol Biol. 2018;1733:79–85.
  • Staretz-Chacham O, Choi JH, Wakabayashi K, Lopez G, Sidransky E. Psychiatric and behavioral manifestations of lysosomal storage disorders. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(7):1253–1265. doi:10.1002/ajmg.b.31097
  • Zhao Z, Xu J, Chen J, et al. Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Mol Psychiatry. 2015;20(5):563–572. doi:10.1038/mp.2014.82
  • Zoicas I, Reichel M, Gulbins E, Kornhuber J. Role of acid sphingomyelinase in the regulation of social behavior and memory. PLoS One. 2016;11(9):e0162498. doi:10.1371/journal.pone.0162498
  • Rhein C, Zoicas I, Marx LM, et al. mRNA expression of SMPD1 encoding acid sphingomyelinase decreases upon antidepressant treatment. Int J Mol Sci. 2021;22(11):5700. doi:10.3390/ijms22115700
  • Niemeyer C, Matosin N, Kaul D, Philipsen A, Gassen NC. The role of cathepsins in memory functions and the pathophysiology of psychiatric disorders. Front Psychiatry. 2020;11:718.
  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. 2000;404(6779):770–774.
  • Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol. 2011;23(4):464–475.
  • Cybulsky AV. The intersecting roles of endoplasmic reticulum stress, ubiquitin- proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 2013;84(1):25–33.
  • Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology. 2007;22:193–201.
  • Andreazza AC, Kauer-Sant’anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord. 2008;111(2–3):135–144.
  • Muneer A, Shamsher Khan RM. Endoplasmic reticulum stress: implications for neuropsychiatric disorders. Chonnam Med J. 2019;55(1):8–19.
  • Pfaffenseller B, Wollenhaupt-Aguiar B, Fries GR, et al. Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression. Int J Neuropsychopharmacol. 2014;17(9):1453–1463.
  • Kakiuchi C, Ishiwata M, Nanko S, et al. Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem Biophys Res Commun. 2005;336(4):1136–1143.
  • Kakiuchi C, Iwamoto K, Ishiwata M, et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet. 2003;35(2):171–175.
  • Bengesser SA, Reininghaus EZ, Dalkner N, et al. Endoplasmic reticulum stress in bipolar disorder? - BiP and CHOP gene expression- and XBP1 splicing analysis in peripheral blood. Psychoneuroendocrinology. 2018;95:113–119.
  • Yoshino Y, Dwivedi Y. Elevated expression of unfolded protein response genes in the prefrontal cortex of depressed subjects: effect of suicide. J Affect Disord. 2020;262:229–236.
  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479.
  • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477–513.
  • Hegde AN, Upadhya SC. The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci. 2007;30(11):587–595.
  • Kawabe H, Brose N. The role of ubiquitylation in nerve cell development. Nat Rev Neurosci. 2011;12(5):251–268.
  • Cheon S, Dean M, Chahrour M. The ubiquitin proteasome pathway in neuropsychiatric disorders. Neurobiol Learn Mem. 2019;165:106791.
  • Spindola L, Santoro M, Pan P, et al. SU73 - GENE EXPRESSION IN BLOOD OF ADOLESCENTS WITH PSYCHIATRIC DISORDERS. Eur Neuropsychopharmacol. 2019;29:S927–S928.
  • Kawabe H, Stegmuller J. The role of E3 ubiquitin ligases in synapse function in the healthy and diseased brain. Mol Cell Neurosci. 2021;112:103602.
  • Lee S, Park S, Lee H, et al. Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor. Elife. 2019;8:1.
  • Ma P, Mao B. The many faces of the E3 ubiquitin ligase, RNF220, in neural development and beyond. Dev Growth Differ. 2022;64(2):98–105. doi:10.1111/dgd.12756
  • Xu J, Guo C, Liu Y, et al. Nedd4l downregulation of NRG1 in the mPFC induces depression-like behaviour in CSDS mice. Transl Psychiatry. 2020;10(1):249. doi:10.1038/s41398-020-00935-x
  • Levchenko A, Vyalova NM, Nurgaliev T, et al. NRG1, PIP4K2A, and HTR2C as potential candidate biomarker genes for several clinical subphenotypes of depression and bipolar disorder. Front Genet. 2020;11:936. doi:10.3389/fgene.2020.00936
  • Dwivedi Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat. 2009;5:433–449. doi:10.2147/NDT.S5700
  • Li Y, Jia Y, Wang D, et al. Programmed cell death 4 as an endogenous suppressor of BDNF translation is involved in stress-induced depression. Mol Psychiatry. 2021;26(6):2316–2333. doi:10.1038/s41380-020-0692-x
  • Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol. 2007;18(5–6):391–418. doi:10.1097/FBP.0b013e3282ee2aa8
  • Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev. 2009;33(5):699–771. doi:10.1016/j.neubiorev.2009.01.004
  • Kang HJ, Voleti B, Hajszan T, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18(9):1413–1417. doi:10.1038/nm.2886
  • Marchetti L, Lauria M, Caberlotto L, et al. Gene expression signature of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal separation. Eur Neuropsychopharmacol. 2020;31:69–85. doi:10.1016/j.euroneuro.2019.11.004
  • Marshe VS, Maciukiewicz M, Hauschild AC, et al. Genome-wide analysis suggests the importance of vascular processes and neuroinflammation in late-life antidepressant response. Transl Psychiatry. 2021;11(1):127. doi:10.1038/s41398-021-01248-3
  • Moschny N, Zindler T, Jahn K, et al. Novel candidate genes for ECT response prediction-A pilot study analyzing the DNA methylome of depressed patients receiving electroconvulsive therapy. Clin Epigenetics. 2020;12(1):114. doi:10.1186/s13148-020-00891-9
  • Brus O, Cao Y, Gustafsson E, et al. Self-assessed remission rates after electroconvulsive therapy of depressive disorders. Eur Psychiatry. 2017;45:154–160. doi:10.1016/j.eurpsy.2017.06.015
  • Wu W, Howard D, Sibille E, French L. Differential and spatial expression meta-analysis of genes identified in genome-wide association studies of depression. Transl Psychiatry. 2021;11(1):8. doi:10.1038/s41398-020-01127-3
  • Hu TM, Chung HS, Ping LY, et al. Differential expression of multiple disease-related protein groups induced by valproic acid in human SH-SY5Y neuroblastoma cells. Brain Sci. 2020;10(8). doi:10.3390/brainsci10080545
  • You X, Zhang Y, Long Q, et al. Does single gene expression omnibus data mining analysis apply for only tumors and not mental illness? A preliminary study on bipolar disorder based on bioinformatics methodology. Medicine. 2020;99(35):e21989. doi:10.1097/MD.0000000000021989
  • Liu W, Zhang L, Zheng D, Zhang Y. Umbilical cord blood-based gene signatures related to prenatal major depressive disorder. Medicine. 2019;98(28):e16373. doi:10.1097/MD.0000000000016373
  • Filipovic D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic fluoxetine treatment of socially isolated rats modulates prefrontal cortex proteome. Neuroscience. 2022;501:52–71. doi:10.1016/j.neuroscience.2022.08.011
  • Belaish S, Israel-Elgali I, Shapira G, et al. Genome wide analysis implicates upregulation of proteasome pathway in major depressive disorder. Transl Psychiatry. 2021;11(1):409. doi:10.1038/s41398-021-01529-x
  • Minelli A, Magri C, Barbon A, et al. Proteasome system dysregulation and treatment resistance mechanisms in major depressive disorder. Transl Psychiatry. 2015;5(12):e687. doi:10.1038/tp.2015.180
  • Tomida S, Mamiya T, Sakamaki H, et al. Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests. Nat Genet. 2009;41(6):688–695. doi:10.1038/ng.344
  • Yoon S, Parnell E, Kasherman M, et al. Usp9X controls ankyrin-repeat domain protein homeostasis during dendritic spine development. Neuron. 2020;105(3):506–521 e507. doi:10.1016/j.neuron.2019.11.003
  • Imai S, Mamiya T, Tsukada A, et al. Ubiquitin-specific peptidase 46 (Usp46) regulates mouse immobile behavior in the tail suspension test through the GABAergic system. PLoS One. 2012;7(6):e39084. doi:10.1371/journal.pone.0039084
  • Fukuo Y, Kishi T, Kushima I, et al. Possible association between ubiquitin-specific peptidase 46 gene and major depressive disorders in the Japanese population. J Affect Disord. 2011;133(1–2):150–157. doi:10.1016/j.jad.2011.04.020
  • Boo YJ, Park CI, Kim HW, Kim SJ, Kang JI. Possible association of the ubiquitin-specific peptidase 46 gene (USP46) with affective temperamental traits in healthy Korean volunteers. Psychiatry Investig. 2019;16(1):87–92. doi:10.30773/pi.2018.10.02
  • Karam EG, Itani L, Fayyad J, et al. Temperament and suicide: a national study. J Affect Disord. 2015;184:123–128. doi:10.1016/j.jad.2015.05.047
  • Mullins N, Forstner AJ, O’Connell KS, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53(6):817–829. doi:10.1038/s41588-021-00857-4
  • Jenkins PM, Kim N, Jones SL, et al. Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling. Proc Natl Acad Sci U S A. 2015;112(4):957–964. doi:10.1073/pnas.1416544112
  • Smith KR, Kopeikina KJ, Fawcett-Patel JM, et al. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron. 2014;84(2):399–415. doi:10.1016/j.neuron.2014.10.010
  • Tseng WC, Jenkins PM, Tanaka M, Mooney R, Bennett V. Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors. Proc Natl Acad Sci U S A. 2015;112(4):1214–1219. doi:10.1073/pnas.1417989112
  • Hughes T, Sonderby IE, Polushina T, et al. Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder. Transl Psychiatry. 2018;8(1):210. doi:10.1038/s41398-018-0175-x
  • Konopaske GT, Lange N, Coyle JT, Benes FM. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry. 2014;71(12):1323–1331. doi:10.1001/jamapsychiatry.2014.1582
  • Cubillos-Ruiz A, Guo T, Sokolovska A, et al. Engineering living therapeutics with synthetic biology. Nat Rev Drug Discov. 2021;20(12):941–960. doi:10.1038/s41573-021-00285-3
  • Becker K, Klarner H, Nowicka M, Siebert H. Designing miRNA-based synthetic cell classifier circuits using answer set programming. Front Bioeng Biotechnol. 2018;6:70. doi:10.3389/fbioe.2018.00070
  • Matsuyama H, Suzuki HI. Systems and synthetic microRNA Biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1). doi:10.3390/ijms21010132
  • Lin MW, Tseng YW, Shen CC, et al. Synthetic switch-based baculovirus for transgene expression control and selective killing of hepatocellular carcinoma cells. Nucleic Acids Res. 2018;46(15):e93. doi:10.1093/nar/gky447
  • Liu Y, Han Y, Zhang H, et al. Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One. 2012;7(12):e52280. doi:10.1371/journal.pone.0052280
  • Alabi SB, Crews CM. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem. 2021;296:100647. doi:10.1016/j.jbc.2021.100647
  • Takahashi D, Moriyama J, Nakamura T, et al. AUTACs: cargo-specific degraders using selective autophagy. Mol Cell. 2019;76(5):797–810 e710. doi:10.1016/j.molcel.2019.09.009
  • Ramadas B, Kumar Pain P, Manna D. LYTACs: an emerging tool for the degradation of non-cytosolic proteins. ChemMedChem. 2021;16(19):2951–2953. doi:10.1002/cmdc.202100393
  • Post RM. Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena. Neurosci Biobehav Rev. 2007;31(6):858–873. doi:10.1016/j.neubiorev.2007.04.003
  • Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology. 2010;35(12):2378–2391. doi:10.1038/npp.2010.114
  • Yu H, Wan L, Tang Z, et al. TRIM27 regulates the expression of PDCD4 by the ubiquitin‑proteasome pathway in ovarian and endometrial cancer cells. Oncol Rep. 2022;48(1). doi:10.3892/or.2022.8331
  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 2006;314(5798):467–471. doi:10.1126/science.1130276
  • Matsuhashi S, Manirujjaman M, Hamajima H, Ozaki I. Control mechanisms of the tumor suppressor PDCD4: expression and functions. Int J Mol Sci. 2019;20(9):2304. doi:10.3390/ijms20092304
  • Casarotto PC, Girych M, Fred SM, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184(5):1299–1313 e1219. doi:10.1016/j.cell.2021.01.034
  • Guo YY, Lu Y, Zheng Y, et al. Ubiquitin C-terminal hydrolase L1 (UCH-L1) promotes hippocampus-dependent memory via its deubiquitinating effect on TrkB. J Neurosci. 2017;37(25):5978–5995. doi:10.1523/JNEUROSCI.3148-16.2017
  • Martin-Rodriguez C, Song M, Anta B, et al. TrkB deubiquitylation by USP8 regulates receptor levels and BDNF-dependent neuronal differentiation. J Cell Sci. 2020;133(24). doi:10.1242/jcs.247841
  • Erbay LG, Karlidag R, Oruc M, Cigremis Y, Celbis O. Association of BDNF / TrkB and NGF / TrkA levels in postmortem brain with major depression and suicide. Psychiatr Danub. 2021;33(4):491–498. doi:10.24869/psyd.2021.491
  • Pandya C, Kutiyanawalla A, Turecki G, Pillai A. Glucocorticoid regulates TrkB protein levels via c-Cbl dependent ubiquitination: a decrease in c-Cbl mRNA in the prefrontal cortex of suicide subjects. Psychoneuroendocrinology. 2014;45:108–118. doi:10.1016/j.psyneuen.2014.03.020
  • Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: a review. Eur J Neurosci. 2021;53(1):151–171. doi:10.1111/ejn.14720
  • Jiang X, Zhou J, Wang Y, et al. PROTACs suppression of GSK-3beta, a crucial kinase in neurodegenerative diseases. Eur J Med Chem. 2021;210:112949. doi:10.1016/j.ejmech.2020.112949
  • Sirerol-Piquer M, Gomez-Ramos P, Hernandez F, et al. GSK3beta overexpression induces neuronal death and a depletion of the neurogenic niches in the dentate gyrus. Hippocampus. 2011;21(8):910–922. doi:10.1002/hipo.20805
  • Albert U, De Cori D, Blengino G, Bogetto F, Maina G. Trattamento con litio e potenziali effetti collaterali a lungo termine: una revisione sistematica della letteratura [Lithium treatment and potential long-term side effects: a systematic review of the literature]. Riv Psichiatr. 2014;49(1):12–21. Italian. doi:10.1708/1407.15620
  • Wang C, Zhang Y, Wu Y, Xing D. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur J Med Chem. 2021;225:113749. doi:10.1016/j.ejmech.2021.113749
  • Henning NJ, Boike L, Spradlin JN, et al. Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat Chem Biol. 2022;18(4):412–421. doi:10.1038/s41589-022-00971-2
  • Xi JY, Zhang RY, Chen K, et al. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorg Chem. 2022;125:105848. doi:10.1016/j.bioorg.2022.105848
  • Gavathiotis E, Reyna DE, Bellairs JA, Leshchiner ES, Walensky LD. Direct and selective small-molecule activation of proapoptotic BAX. Nat Chem Biol. 2012;8(7):639–645. doi:10.1038/nchembio.995
  • Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171(8):829–843. doi:10.1176/appi.ajp.2014.13081008
  • Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology. 2022;47(1):225–246. doi:10.1038/s41386-021-01101-7
  • Liu X, Ciulli A. DUB be good to me. Nat Chem Biol. 2022;18(4):358–359. doi:10.1038/s41589-022-00978-9
  • Ciuculete DM, Voisin S, Kular L, et al. meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes. Clin Epigenetics. 2020;12(1):99. doi:10.1186/s13148-020-00884-8
  • Li X, Luo Z, Gu C, et al. Common variants on 6q16.2, 12q24.31 and 16p13.3 are associated with major depressive disorder. Neuropsychopharmacology. 2018;43(10):2146–2153. doi:10.1038/s41386-018-0078-9
  • Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry. 2006;11(10):965–978. doi:10.1038/sj.mp.4001875
  • Sayad A, Taheri M, Azari I, Oskoei VK, Ghafouri-Fard S. PIAS genes as disease markers in bipolar disorder. J Cell Biochem. 2019;120(8):12937–12942. doi:10.1002/jcb.28564
  • Teyssier JR, Rey R, Ragot S, Chauvet-Gelinier JC, Bonin B. Correlative gene expression pattern linking RNF123 to cellular stress-senescence genes in patients with depressive disorder: implication of DRD1 in the cerebral cortex. J Affect Disord. 2013;151(2):432–438. doi:10.1016/j.jad.2013.04.010
  • Tripathi A, Scaini G, Barichello T, Quevedo J, Pillai A. Mitophagy in depression: pathophysiology and treatment targets. Mitochondrion. 2021;61:1–10. doi:10.1016/j.mito.2021.08.016
  • FloresSantibáñez F, Medel B, Bernales JI, Osorio F. Understanding the Role of the Unfolded Protein Response Sensor IRE1 in the Biology of Antigen Presenting Cells. Cells. 2019;8(12):1563. doi: 10.3390/cells8121563.