814
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Mindfulness Meditation Interventions for Long COVID: Biobehavioral Gene Expression and Neuroimmune Functioning

& ORCID Icon
Pages 2599-2626 | Received 13 Aug 2022, Accepted 26 Oct 2022, Published online: 08 Nov 2022

References

  • Fowler-Davis S, Platts K, Thelwell M, Woodward A, Harrop D. A mixed-methods systematic review of post-viral fatigue interventions: are there lessons for long Covid? PLoS One. 2021;16(11):e0259533. doi:10.1371/journal.pone.0259533
  • Vehar S, Boushra M, Ntiamoah P, Biehl M. Update to post-acute sequelae of SARS-CoV-2 infection: caring for the ‘long-haulers’. Cleve Clin J Med. 2021. doi:10.3949/ccjm.88a.21010-up
  • Porter NS, Jason LA, Boulton A, Bothne N, Coleman B. Alternative medical interventions used in the treatment and management of myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia. J Altern Complement Med. 2010;16(3):235–249. doi:10.1089/acm.2008.0376
  • Mahendru K, Pandit A, Singh V, Choudhary N, Mohan A, Bhatnagar S. Effect of meditation and breathing exercises on the well-being of patients with SARS-CoV-2 infection under institutional isolation: a randomized control trial. Indian J Palliat Care. 2021;27(4):490–494. doi:10.25259/IJPC_40_21
  • Creswell JD, Myers HF, Cole SW, Irwin MR. Mindfulness meditation training effects on CD4+ T lymphocytes in HIV-1 infected adults: a small randomized controlled trial. Brain Behav Immun. 2009;23(2):184–188. doi:10.1016/j.bbi.2008.07.004
  • Dalpati N, Jena S, Jain S, Sarangi PP. Yoga and meditation, an essential tool to alleviate stress and enhance immunity to emerging infections: a perspective on the effect of COVID-19 pandemic on students. Brain Behav Immun Health. 2022;20:100420. doi:10.1016/j.bbih.2022.100420
  • Morgan N, Irwin MR, Chung M, Wang C. The effects of mind-body therapies on the immune system: meta-analysis. PLoS One. 2014;9:e100903. doi:10.1371/journal.pone.0100903
  • Bushell W, Castle R, Williams MA, et al. Meditation and yoga practices as potential adjunctive treatment of SARS-CoV-2 infection and COVID-19: a brief overview of key subjects. J Alternative Complementary Med. 2020;26(7):547–556. doi:10.1089/acm.2020.0177
  • Dobkin P, Zhao Q. Increased mindfulness - the active component of the mindfulness-based stress reduction program? Complement Ther Clin Pract. 2011;17:22–27. doi:10.1016/j.ctcp.2010.03.002
  • Islam MF, Cotler J, Jason LA. Post-Viral fatigue and COVID-19: lessons from past epidemics. Fatigue: biomedicine. Health Behav. 2020;8(2):61–69. doi:10.1080/21641846.2020.1778227
  • Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11:16144. doi:10.1038/s41598-021-95565-8
  • Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019. doi:10.1016/j.eclinm.2021.101019
  • Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré syndrome associated with SARS-CoV-2. N Eng J Med. 2020;20:e00771.
  • Parshley P The emerging long-term complications of COVID-19, explained; 2020. Available from: https://www.vox.com/2020/5/8/21251899/coronavirus-long-term-effects-symptoms. Accessed October 26, 2022.
  • Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802. doi:10.1001/jamacardio.2020.0950
  • Singer ME, Taub IB, Kaelber DC. Risk of myocarditis from COVID-19 infection in people under 20: a population-based analysis. medRxiv. 2021. doi:10.1101/2021.07.23.21260998
  • Body Politic COVID-19 Support Group. What does COVID-19 recovery look like? An analysis of the prolonged COVID-19 symptoms survey by patient-led research team; 2020. Available from: https://drive.google.com/file/d/1EPU9DAc6HhVUrdvjWuSRVmAkEiOagyUV/view. Accessed October 26, 2022.
  • Logue JK, Franko NM, McCulloch DJ, et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Network Open. 2021;4(2):e210830. doi:10.1001/jamanetworkopen.2021.0830
  • Komaroff T. The tragedy of the post-COVID “long haulers”. Harvard Health Blog. 2020. Available from: https://www.health.harvard.edu/blog/author/komaroff. Accessed October 26, 2022.
  • Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. Br Med J. 2020;370:m3026. doi:10.1136/bmj.m3026
  • Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: redefining an Illness (25695122). National Acad Press. 2015. doi:10.17226/19012
  • Geddes JR. Learning from the global response to COVID-19 to accelerate innovation in mental health trials. World Psychiatry. 2020;20:3. doi:10.1002/wps.20918
  • Jason LA, Holtzman CS, Sunnquist M, Cotler J. The development of an instrument to assess post-exertional malaise in patients with ME and CFS. J Health Psychol. 2021;26(2):238–248. doi:10.1177/1359105318805819
  • Vehar S, Boushra M, Ntiamoah P, Biehl M. Update to post-acute sequelae of SARS-CoV-2 infection: caring for the ‘long-haulers’. Cleve Clin J Med. 2021. doi:10.3949/ccjm.88a.21010-up
  • NHS. NHS Launches 40 ‘Long COVID’ Clinics to Tackle Persistent Symptoms. In press. 2020. 2020.
  • Perego E, Callard F, Stras L, Melville-Johannesson B, Pope R, Alwan N. Why the Patient-Made Term ‘Long Covid’is needed. Wellcome Open Res. 2020;5:224. doi:10.12688/wellcomeopenres.16307.1
  • Wise J. Long covid: WHO calls on countries to offer patients more rehabilitation. BMJ. 2021;372:405. doi:10.1136/bmj.n405
  • RECOVER. RECOVER: researching COVID to enhance recovery. Available from: https://recovercovid.org/. Accessed July 15, 2022.
  • Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153–160. doi:10.1016/j.bbi.2006.09.006
  • Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav Immun. 2017;64:208–219. doi:10.1016/j.bbi.2017.01.011
  • Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140(3):774–815. doi:10.1037/a0035302
  • Abdurachman HN. The role of psychological well-being in boosting immune response: an optimal effort for tackling infection. Af J Infectious Dis. 2018;12(1 Suppl):54–61. doi:10.2101/Ajid.12v1S.7
  • Kabat-Zinn J, Massion AO, Kristeller J, et al. Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders. Am J Psychiatry. 1992;149(7):936–943.
  • Lutz A, Slagter HA, Dunne JD, Davidson RJ. Attention regulation and monitoring in meditation. Trends Cogn Sci. 2008;12(4):163–169. doi:10.1016/j.tics.2008.01.005
  • Hsieh C, Liou C, Hsieh C, et al. Noninvasive functional source imaging of the brain and heart. Int Conference Functional Biomed Imaging, 2007;12:245–246.
  • Jason LA, Porter N, Hunnell J, Rademaker A, Richman JA. CFS prevalence and risk factors over time. J Health Psychol. 2010;16:445–456. doi:10.1177/1359105310383603
  • Jason LA, Porter N, Herrington J, Sorenson M, Kubow S. Kindling and oxidative stress as contributors to myalgic encephalomyelitis/chronic fatigue syndrome. J Behav Neurosci Res. 2009;7(2):1–17.
  • Kaklamanos A, Belogiannis K, Skendros P, Gorgoulis VG, Vlachoyiannopoulos PG, Tzioufas AG. COVID-19 immunobiology: lessons learned, new questions arise. Front Immunol. 2021;12:719023. doi:10.3389/fimmu.2021.719023
  • Proal AD, VanElzakker MB. Pathogens hijack host cell metabolism: intracellular infection as a driver of the Warburg effect in cancer and other chronic inflammatory conditions. Immunometabolism. 2021;3:e210003. doi:10.20900/immunometab20210003
  • Hirschenberger M, Hayn M, Laliberté A, Koepke L, Kirchhoff F, Sparrer KMJ. Luciferase reporter assays to monitor interferon signaling modulation by SARS-CoV-2 proteins. STAR Protoc. 2021;2(4):100781. doi:10.1016/j.xpro.2021.100781
  • Pasini E, Corsetti G, Romano C, et al. Serum metabolic profile in patients with Long-Covid (PASC) syndrome: clinical implications. Front Med. 2021;22(8):714426. doi:10.3389/fmed.2021.714426
  • Ulhaq ZS, Soraya GV. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect. 2020;50(4):382–383. doi:10.1016/j.medmal.2020.04.002
  • Sabaka P, Koščálová A, Straka I, et al. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis. 2021;21(1):308. doi:10.1186/s12879-021-05945-8
  • Rubin EJ, Longo DL, Baden LR. Interleukin-6 Receptor Inhibition in Covid-19 — cooling the Inflammatory Soup. N Engl J Med. 2021;384:1564–1565. doi:10.1056/NEJMe2103108
  • Sorenson M, Jason L, Lerch A, Porter N, Peterson J, Mathews H. The production of Interleukin-8 is increased in plasma and peripheral blood mononuclear cells of patients with fatigue. Neurosci Med. 2012;3:47–53. doi:10.4236/nm.2012.31007
  • Porter N, Lerch A, Jason LA, Sorenson M, Fletcher MA, Herrington J. A comparison of immune functionality in viral versus non-viral CFS subtypes. J Behav Neurosci Res. 2010;8:1–8.
  • Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-classical monocytes display inflammatory features: validation in sepsis and systemic lupus erythematous. Sci Rep. 2015;5:13886. doi:10.1038/srep13886
  • Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine levels in critically ill patients with COVID-19 and other conditions. J Am Med Assoc. 2020;324(15):1565. doi:10.1001/jama.2020.17052
  • Patterson BK, Francisco EB, Yogendra R, et al. Persistence of SARS CoV-2 S1 protein in CD16+ monocytes in post-acute sequelae of COVID-19 (PASC) up to 15 months post-infection. Front Immunol. 2022;12:746021. doi:10.3389/fimmu.2021.746021
  • Remick DG. Systemic inflammation. Pathobiol Human Dis. 2014;1:315–322.
  • Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383:2255–2273. doi:10.1056/NEJMra2026131
  • Mangalmurti N, Hunter CA. Cytokine storms: understanding COVID-19. Immunity. 2020;53(1):19–25. doi:10.1016/j.immuni.2020.06.017
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi:10.1016/S0140-6736(20)30628-0
  • Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;16(11):1446. doi:10.3389/fimmu.2020.01446
  • Dong C, Flavell RA. Cell fate decision: t-helper 1 and 2 subsets in immune responses. Arthritis Res Ther. 2000;2:179. doi:10.1186/ar85
  • Zhao JL, Wang X, Wang YS. Relationships between Th1/Th2 cytokine profiles and chest radiographic manifestations in childhood Mycoplasma pneumonia. Ther Clin Risk Manag. 2016;12:1683–1692. doi:10.2147/TCRM.S121928
  • Huang Z, Fu B, Zheng SG, et al. Involvement of CD226+ NK cells in immunopathogenesis of systemic lupus erythematosus. J Immunol. 2011;186(6):3421–3431. doi:10.4049/jimmunol.1000569
  • Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine. 2015;72(2):146–153. doi:10.1016/j.cyto.2014.12.027
  • Pavel AB, Glickman JW, Michels JR, Kim-Schulze S, Miller RL, Guttman-Yassky E. Th2/Th1 cytokine imbalance is associated with higher COVID-19 risk mortality. Front Genet. 2021;12:706902. doi:10.3389/fgene.2021.706902
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi:10.1016/S0140-6736(20)30183-5
  • Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511. doi:10.1126/science.abc8511
  • Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671–1692. doi:10.1016/j.cell.2021.02.029
  • Patterson BK, Guevara-Coto J, Yogendra R, et al. Immune-based prediction of COVID-19 severity and chronicity decoded using Machine Learning. Front Immunol. 2021:12.
  • Jason LA, Amity O. Letter to the Editor: comments on Mullard, A. (2022). The quest to prevent MS – and understand other post-viral diseases. Nature. 2022;603:784–786. doi:10.1038/d41586-022-00808-x
  • Jason LA, Brown M, Evans M, et al. Measuring substantial reduction in functioning in patients with chronic fatigue syndrome. Disabil Rehabil. 2011;33(7):589–598. doi:10.3109/09638288.2010.503256
  • Bower JE, Crosswell AD, Stanton AL, et al. Mindfulness meditation for younger breast cancer survivors: a randomized controlled trial. Cancer. 2015;121:1231–1240. doi:10.1002/cncr.29194
  • Cahn BR, Goodman MS, Peterson CT, Maturi R, Mills PJ. Yoga, Meditation and Mind-Body Health: increased BDNF, Cortisol Awakening Response, and Altered Inflammatory Marker Expression after a 3-Month Yoga and Meditation Retreat. Front Hum Neurosci. 2017;11:15. doi:10.3389/fnhum.2017.00315.
  • Carlson LE, Speca M, Patel KD, Goodey E. Mindfulness-based stress reduction in relation to quality of life, mood, symptoms of stress, and immune parameters in breast and prostate cancer outpatients. Psychosom Med. 2003;65:571–581. doi:10.1097/01.PSY.0000074003.35911.41
  • Jang JH, Park HY, Lee US, Lee KJ, Kang DH. Effects of mind-body training on cytokines and their interactions with catecholamines. Psychiatry Investig. 2017;14(4):483–490. doi:10.4306/pi.2017.14.4.483.
  • Jedel S, Hoffman A, Merriman P, et al. A randomized controlled trial of mindfulness-based stress reduction to prevent flare-up in patients with inactive ulcerative colitis. Digestion. 2014;89:142–155. doi:10.1159/000356316
  • Witek-Janusek L, Albuquerque K, Chroniak KR, Chroniak C, Durazo-Arvizu R, Mathews HL. Effect of mindfulness based stress reduction on immune function, quality of life and coping in women newly diagnosed with early stage breast cancer. Brain Behav Immun. 2008;22(6):969–981. doi:10.1016/j.bbi.2008.01.012
  • Black DS, Slavich GM. Mindfulness meditation and the immune system: a systematic review of randomized controlled trials. Ann N Y Acad Sci. 2016;1373(1):13–24. doi:10.1111/nyas.12998
  • Pascoe MC, Thompson DR, Jenkins ZM, Ski CF. Mindfulness mediates the physiological markers of stress: systematic review and meta-analysis. J Psychiatr Res. 2017;95:156–178. doi:10.1016/j.jpsychires.2017.08.004
  • Jiang T, Hou J, Sun R, et al. Immunological and psychological efficacy of meditation/yoga intervention among People Living With HIV (PLWH): a systematic review and meta-analyses of 19 randomized controlled trials. Ann Behav Med. 2021;55(6):505–519. doi:10.1093/abm/kaaa084
  • Naoroibam R, Metri KG, Bhargav H, Nagaratna R, Nagendra HR. Effect of Integrated Yoga (IY) on psychological states and CD4 counts of HIV-1 infected patients: a randomized controlled pilot study. Int J Yoga. 2016;9(1):57–61. doi:10.4103/0973-6131.171723
  • Wang DJ, Rao H, Korczykowski M, et al. Cerebral blood flow changes associated with different meditation practices and perceived depth of meditation. Psychiatry Res. 2011;191(1):60–67. doi:10.1016/j.pscychresns.2010.09.011
  • Lengacher CA, Kip KE, Post-White J, et al. Lymphocyte recovery after breast cancer treatment and Mindfulness-Based Stress Reduction (MBSR) Therapy. Biol Res Nurs. 2013;15(1):37–47. doi:10.1177/1099800411419245
  • Sanada K, Montero-Marin J, Barceló-Soler A, et al. Effects of mindfulness-based interventions on biomarkers and low-grade inflammation in patients with psychiatric disorders: a meta-analytic review. Int J Mol Sci. 2020;21(7):2484. doi:10.3390/ijms21072484
  • Infante JR, Peran F, Rayo J, et al. Levels of immune cells in transcendental meditation practitioners. Int J Yoga. 2014;1(2):147–151. doi:10.4103/0973-6131.133899
  • Vera FM, Manzaneque JM, Rodríguez FM, Bendayan R, Fernández N, Alonso A. Acute effects on the counts of innate and adaptive immune response cells after 1 month of Taoist qigong practice. Int J Behav Med. 2016;23(2):198–203. doi:10.1007/s12529-015-9509-8
  • Boyd JE, Lanius RA, McKinnon MC. Mindfulness-based treatments for post-traumatic stress disorder: a review of the treatment literature and neurobiological evidence. J Psychiatry Neurosci. 2018;43:7–25. doi:10.1503/jpn.170021
  • Nidich S, Mills PJ, Rainforth M, et al. Non-trauma-focused meditation versus exposure therapy in veterans with post-traumatic stress disorder: a randomised controlled trial. Lancet Psychiatry. 2018;5(12):975–986. doi:10.1016/S2215-0366(18)30384-5
  • Bower JE, Irwin MR. Mind-body therapies and control of inflammatory biology: a Descriptive review. Brain Behav Immun. 2016;51:1–11. doi:10.1016/j.bbi.2015.06.012
  • Carlson AA, Smith EA, Reid DJ. The stats are in: an update on statin use in COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:2277–2284. doi:10.2147/COPD.S78875
  • Eda N, Shimizu K, Suzuki S, et al. Effects of yoga exercise on salivary beta-defensin 2. Eur J Appl Physiol. 2013;113(10):2621–2627. doi:10.1007/s00421-013-2703-y
  • Buric I, Farias M, Jong J, Mee C, Brazil IA. What is the molecular signature of mind–body interventions? A systematic review of gene expression changes induced by meditation and related practices. Front Immunol. 2017;8:670. doi:10.3389/fimmu.2017.00670
  • Epel E, Puterman E, Lin J, et al. Meditation and vacation effects have an impact on disease-associated molecular phenotypes. Transl Psychiatry. 2016;6:e880. doi:10.1038/tp.2016.164
  • Bushell WC. From molecular biology to anti-aging cognitive-behavioral practices: the pioneering research of Walter Pierpaoli on the pineal and bone marrow foreshadows the contemporary revolution in stem cell and regenerative biology. Ann N Y Acad Sci. 2005;1057(4):28–49. doi:10.1196/annals.1322.002
  • Awandare GA, Goka B, Boeuf P, et al. Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress. J Infect Dis. 2006;194:1438–1446. doi:10.1086/508547
  • Kuntsevich V, Bushell WC, Theise ND. Mechanisms of yogic practices in health, aging, and disease. Mt Sinai J Med. 2010;77:559–569. doi:10.1002/msj.20214
  • Okabayashi T, Kariwa H, Yokota S, et al. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol. 2006;78:417–424. doi:10.1002/jmv.20556
  • Lickliter R, Witherington DC. Towards a truly developmental epigenetics. Hum Dev. 2017;60(2–3):124–138. doi:10.1159/000477996
  • Moore DS. The potential of epigenetics research to transform conceptions of phenotype development. Hum Dev. 2017;60:69–80. doi:10.1159/000477992
  • Moore DS, Flom R. Epigenetics and behavioral development [Editorial]. Infant Behav Dev. 2020;61:1–4. doi:10.1016/j.infbeh.2020.101477
  • Venditti S, Verdone L, Reale A, Vetriani V, Caserta M, Zampieri M. Molecules of silence: effects of meditation on gene expression and epigenetics. Front Psychol. 2020;11:1767. doi:10.3389/fpsyg.2020.01767
  • Binnie A, Walsh CJ, Hu P, et al. Epigenetic profiling in severe sepsis: a pilot study of DNA methylation profiles in critical illness. Crit Care Med. 2020;48(2):142–150. doi:10.1097/CCM.0000000000004097
  • Balnis J, Madrid A, Hogan KJ, et al. Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics. 2021;13:118. doi:10.1186/s13148-021-01102-9
  • de Moura M, Davalos V, Planas-Serra L, et al. Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine. 2021;66:103339. doi:10.1016/j.ebiom.2021.103339
  • Schlechta Portella CF, Ghelman R, Abdala V, Schveitzer MC, Afonso RF. Meditation: evidence map of systematic reviews. Front Public Health. 2021;9:742715. doi:10.3389/fpubh.2021.742715
  • Rathore M, Abraham J. Implication of asana, pranayama and meditation on telomere stability. Int J Yoga. 2018;11(3):186–193. doi:10.4103/ijoy.IJOY_51_17
  • Babizhayev M, Moskvina S, Yegorov Y, Yegorov YE. Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. Am J Ther. 2010;18(6):e209–26. doi:10.1097/MJT.0b013e3181cf8ebb
  • Bar C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Research. 2016;5:89. doi:10.12688/f1000research.7020.1
  • Le Nguyen KD, Lin L, Algoe SB, et al. Loving-kindness meditation slows biological aging in novices: evidence from a 12-week randomized controlled trial. Psychoneuroendocrinology. 2019;108:20–27. doi:10.1016/j.psyneuen.2019.05.020
  • Schutte NS, Malouff JM. A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology. 2014;42:45–48. doi:10.1016/j.psyneuen.2013.12.017
  • Dasanayaka NN, Sirisena ND, Samaranayake N. Impact of meditation-based lifestyle practices on mindfulness, wellbeing, and plasma telomerase levels: a case-control study. Front Psychol. 2022;13:846085. doi:10.3389/fpsyg.2022.846085
  • Alda M, Puebla-Guedea M, Rodero B, et al. Zen meditation, length of telomeres, and the role of experiential avoidance and compassion. Mindfulness. 2016;7:651–659. doi:10.1007/s12671-016-0500-5
  • Mendioroz M, Puebla-guedea M, Montero-marín J, et al. Telomere length correlates with subtelomeric DNA methylation in long-term mindfulness practitioners. Sci Rep. 2020;10:4564. doi:10.1038/s41598-020-61241-6
  • Qu S, Olafsrud SM, Meza-Zepeda LA, Saatcioglu F. Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program. PLoS One. 2013;8(4):e61910. doi:10.1371/journal.pone.0061910
  • Harkess KN, Ryan J, Delfabbro PH, Cohen-Woods S. Preliminary indications of the effects of a brief Yoga intervention on markers of inflammation and DNA methylation in chronically stressed women. Transl Psychiatry. 2016;6:e965. doi:10.1038/tp.2016.2
  • Chaix R, Alvarez-Lopez MJ, Fagny M, et al. Epigenetic clock analysis in long-term meditators. Psychoneuroendocrinology. 2017;(2017(85):210–214. doi:10.1016/j.psyneuen.2017.08.016
  • Hovarth S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:548.
  • Chen BH, Marioni RE, Colicino E, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8:1844–1865. doi:10.18632/aging.101020
  • Chaix R, Fagny M, Cosin-Tomás M, et al. Differential DNA methylation in experienced meditators after and intensive day of mindfulness-based practice: implications for immune-related pathways. Brain Behav Immun. 2020;84:36–44. doi:10.1016/j.bbi.2019.11.003
  • Dutcher JM, Cole SW, Williams AC, Creswell JD. Smartphone mindfulness meditation training reduces Pro-inflammatory gene expression in stressed adults: a randomized controlled trial. Brain Behav Immun. 2022;12(103):171–177. doi:10.1016/j.bbi.2022.04.003
  • González-Hermosillo JA, Martínez-López JP, Carrillo-Lampón SA, et al. Post-Acute COVID-19 Symptoms, a potential Link with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: a 6-Month Survey in a Mexican Cohort. Brain Sci. 2021;11:760. doi:10.3390/brainsci11060760
  • Bhatia R, Priya A. The enigmatic COVID-19 pandemic. Indian J Med Res. 2020;152(1–2):1–5. doi:10.4103/ijmr.IJMR_3639_20
  • Lee GT, Antelo F, Mlikotic AA. Best cases from the AFIP: cerebral toxoplasmosis. Radiographics. 2009;29(4):1200–1205. doi:10.1148/rg.294085205
  • Prandota J. The importance of toxoplasma gondii infection in diseases presenting with headaches. Headaches and aseptic meningitis may be manifestations of the Jarisch-Herxheimer reaction. Int J Neurosci. 2009;119(12):2144–2182. doi:10.3109/00207450903149217
  • Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33(25):10503–10511. doi:10.1523/jneurosci.1103-13.2013
  • Benarroch EE. Central Autonomic Control. In: Robertson D, Biaggioni I, Burnstock G, Low PA, editors. Paton JFR Editors. Primer on the Autonomic Nervous System. 3rd ed. Amsterdam: Elsevier; 2012:9–12.
  • Valenzuela Sanchez F, Valenzuela Mendez B, Rodríguez Gutierrez J, et al. Initial levels of mr-proadrenomedullin: a predictor of severity in patients with influenza a virus pneumonia. Int J Med. 2015:A832. doi:10.1186/2197-425X-3-S1-A832
  • Lu Y, Li X, Geng D, et al. Cerebral micro-structural changes in COVID-19 patients – an MRI-based 3-month follow-up study. EClinicalMedicine. 2020;25:100484. doi:10.1016/j.eclinm.2020.100484
  • Jason LA, Zinn ML, Zinn MA. Myalgic encephalomyelitis: symptoms and biomarkers. Curr Neuropharmacol. 2015;13(5):701–734. doi:10.2174/1570159X13666150928105725
  • Porges SW. Vagal tone: a physiologic marker of stress vulnerability. Pediatrics. 1992;90(3 Pt 2):498–504. doi:10.1542/peds.90.3.498
  • Pfaff DW, Kieffer BL, Swanson LW. Mechanisms for the regulation of state changes in the central nervous system. Ann N Y Acad Sci. 2008;1129(1):1–7. doi:10.1196/annals.1417
  • McEwen BS, Bowles NP, Gray JD, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18(10):1353–1363. doi:10.1038/nn.4086
  • Chiappelli F. Towards Neuro-CoViD-19. Bioinformation. 2020;16(4):288–292. doi:10.6026/97320630016288
  • Pezzini A, Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol. 2020;16(1):1–9. doi:10.1038/s41582-020-0398-3
  • Liotta EM, Batra A, Clark JR. Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Ann Clin Translational Neurol. 2020;7(11):2221–2230. doi:10.1002/acn3.51210
  • Barnden LR, Crouch B, Kwiatek R, et al. A brain MRI study of chronic fatigue syndrome: evidence of brainstem dysfunction and altered homeostasis. NMR Biomed. 2011;24(10):1302–1312. doi:10.1002/nbm.1692
  • Barnden LR, Kwiatek R, Crouch B, Burnet R, Del Fante P. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome. Neuroimage Clin. 2016;11:530–537. doi:10.1016/j.nicl.2016.03.017
  • de Lange FP, Kalkman JS, Bleijenberg G. Neural correlates of the chronic fatigue syndrome: an fMRI study. Brain. 2004;127(9):1948–1957. doi:10.1093/brain/awh225
  • Finkelmeyer A, He J, Maclachlan L, et al. Grey and white matter differences in chronic fatigue syndrome – a voxel-based morphometry study. Neuroimage. 2018;17:24–30. doi:10.1016/j.nicl.2017.09.024
  • Nakatomi Y, Mizuno K, Ishii R. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an 11C-(R)- PK11195 PET study. J Nucl Med. 2014;55(6):945–950. doi:10.2967/jnumed.113.131045
  • Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N. Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol. 2004;4(1):14. doi:10.1186/1471-2377-4-14
  • Cook DB, Light AR, Light KC. Neural consequences of post-exertion malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Behav Immun. 2017;62:87–99. doi:10.1016/j.bbi.2017.02.009
  • Stüber C, Morawski M, Schäfer A, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage. 2014;93(1):95–106. doi:10.1016/j.neuroimage.2014.02.026
  • Thapaliya K, Marshall-Gradisnik S, Staines D, Barnden L. Mapping of pathological change in chronic fatigue syndrome using the ratio of T1- and T2-weighted MRI scans. NeuroImage. 2020;28:102366. doi:10.1016/j.nicl.2020.102366
  • Shan ZY, Kwiatek R, Burnet R, et al. Progressive brain changes in patients with chronic fatigue syndrome: a longitudinal MRI study. J Magnetic Resonance Imaging. 2016;44(5):1301–1311. doi:10.1002/jmri.25283
  • Caseras X, Mataix-Cols D, Giampietro V. Probing the working memory system in chronic fatigue syndrome: a functional magnetic resonance imaging study using the n-back task. Psychosom Med. 2006;68(6):947–955. doi:10.1097/01.psy.0000242770.50979.5f
  • Caseras X, Mataix-Cols D, Rimes KA. The neural correlates of fatigue: an exploratory imaginal fatigue provocation study in chronic fatigue syndrome. Psychol Med. 2008;38(7):941–951. doi:10.1017/s0033291708003450
  • Cook DB, Lange G, Steffener J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage. 2007;36(1):108–122. doi:10.1016/j.neuroimage.2007.02.033
  • Zhang J, Cheng W, et al. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. J Neurol. 2016;139(Pt8):2307–2321. doi:10.1093/brain/aww143
  • Gay C, Robinson ME, Lai S. Abnormal resting-state functional connectivity in patients with chronic fatigue syndrome: results of seed and data-driven analyses. Brain Connect. 2015;6(1):48–56. doi:10.1089/brain.2015.0366
  • Boissoneault J, Letzen J, O’Shea A, Lai S, Robinson M, Staud R. Altered resting state functional connectivity is correlated with fatigue and pain in patients with chronic fatigue syndrome. J Pain. 2016;17(4):S38–S39. doi:10.1016/j.jpain.2016.01.158
  • Wortinger LA, Endestad T, Melinder AM, Oie MG, Sevenius A, Bruun Wyller V. Aberrant resting-state functional connectivity in the salience network of adolescent chronic fatigue syndrome. PLoS One. 2016;11(7):e0159351. doi:10.1371/journal.pone.0159351
  • Costa DC, Tannock C, Brostoff J. Brainstem perfusion is impaired in chronic fatigue syndrome. QJM. 1995;88(11):767–773.
  • Schwartz RB, Komaroff AL, Garada BM, Gleit M, Doolittle TH, Bates DW. SPECT imaging of the brain: comparison of findings in patients with chronic fatigue syndrome, AIDS dementia complex, and major unipolar depression. AJR Am J Roentgenol. 1994;162(4):943–951. doi:10.2214/ajr.162.4.8141022
  • Biswal B, Kunwar P, Natelson BH. Cerebral blood flow is reduced in chronic fatigue syndrome as assessed by arterial spin labeling. J Neurol Sci. 2011;301(1–2):9–11. doi:10.1016/j.jns.2010.11.018
  • Yoshiuchi K, Farkas J, Natelson BH. Patients with chronic fatigue syndrome have reduced absolute cortical blood flow. Clin Physiol Funct Imaging. 2006;26(2):83–86. doi:10.1111/j.1475-097X.2006.00649
  • Tirelli U, Chierichetti F, Tavio M. Brain positron emission tomography (PET) in chronic fatigue syndrome: preliminary data. Am J Med. 1998;105(3A):54S–58S. doi:10.1016/S0002-9343(98)00179-X
  • Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268–2270. doi:10.1056/NEJMc2008597
  • Chougar L, Shor N, Weiss N, et al. Retrospective observational study of brain magnetic resonance imaging findings in patients with acute SARS-CoV-2 infection and neurological manifestations. Radiology. 2020;297(3):E313–E323. doi:10.1148/radiol.2020202422
  • Koralnik IJ, Tyler KL. COVID-19: a global threat to the nervous system. Ann Neurol. 2020;88(1):1–11. doi:10.1002/ana.25807
  • Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J, D’Aquili E. The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res. 2001;106:113–122. doi:10.1016/S0925-4927(01)00074-9
  • Herzog H, Lele VR, Kuwert T, Langen K, Kops ER, Feinendegen LE. Changed pattern of regional glucose metabolism during yoga meditative relaxation. Neuropsychobiology. 1990;23:182–187. doi:10.1159/000119450
  • Alferi SM, Carver CS, Antoni MH, Weiss S, Duran DE. An explanatory study of social support, distress, and life disruption among low income Hispanic women under treatment for early stage breast cancer. Health Psychol. 2001;20:41–46. doi:10.1037/0278-6133.20.1.41
  • Centers for Disease Control and Prevention. Treatment of ME/CFS. 2019. Available from: https://www.cdc.gov/me-cfs/treatment/index.html. Accessed October 26, 2022.
  • Wise S, Jantke R, Brown A, O’Connor K, Jason LA. Functional level of patients with chronic fatigue syndrome reporting use of alternative vs. traditional treatments. Biomed Health Behav. 2015;3:235–240.
  • Goleman D, Davidson RJ. Altered Traits: Science Reveals How Meditation Changes Your Mind, Brain, and Body. New York: Avery; 2017.
  • Whitfield T, Barnhofer T, Acabchuk R, et al. The effect of mindfulness-based programs on cognitive function in adults: a systematic review and meta-analysis. Neuropsychol Rev. 2021;32(3):677–702. doi:10.1007/s11065-021-09519-y
  • Zhang D, Lee EKP, Mak ECW, Ho CY, Wong SYS. Mindfulness-based interventions: an overall review. Br Med Bull. 2021;138(1):41–57. doi:10.1093/bmb/ldab005
  • Goldberg SB, Riordan KM, Sun S, Davidson RJ. The empirical status of mindfulness-based interventions: a systematic review of 44 meta-analyses of randomized controlled trials. Perspect Psychol Sci. 2022;17(1):108–130. doi:10.1177/1745691620968771
  • Talley G, Shelley-Tremblay J. The relationship between mindfulness and sleep quality is mediated by emotion regulation. Psychiatry Int. 2020;1(2):42–66. doi:10.3390/psychiatryint1020007
  • Leucht S, Hierl S, Kissling W, Dold M, Davis J. Putting the efficacy of psychiatric and general medicine medication into perspective: review of meta-analyses. Br J Psychiatry. 2012;200(2):97–106. doi:10.1192/bjp.bp.111.096594
  • Rothwell JC, Julious SA, Cooper CL. A study of target effect sizes in randomised controlled trials published in the Health Technology Assessment journal. Trials. 2018;19(1):544. doi:10.1186/s13063-018-2886-y
  • Goldberg SB, Lam SU, Britton WB, Davidson RJ. Prevalence of meditation-related adverse effects in a population-based sample in the United States. Psychother Res. 2022;32(3):291–305. doi:10.1080/10503307.2021.1933646
  • Chandran V, Bermúdez ML, Koka M, et al. Large-scale genomic study reveals robust activation of the immune system following advanced Inner Engineering meditation retreat. Proc Natl Acad Sci U S A. 2021;118(51):e2110455118. doi:10.1073/pnas.2110455118
  • Raudenbush S, Liu XF. Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change. Psychol Methods. 2002;6:387–401. doi:10.1037//1082-989X.6.4.387-401
  • Zeng X, Chio FHN, Oei TPS, Leung FYK, Liu X, Systematic A. Review of associations between amount of meditation practice and outcomes in interventions using the four immeasurables meditations. Front Psychol. 2017;8:141. doi:10.3389/fpsyg.2017.00141
  • Walsh R, Shapiro SL. The meeting of meditative disciplines and western psychology: a mutually enriching dialogue. Am Psychol. 2006;61(3):227–239. doi:10.1037/0003-066X.61.3.227
  • Tang YY, Ma Y, Wang J, et al. Short-term meditation training improves attention and self-regulation. Proce National Acad Sci. 2007;104:17152–17156. doi:10.1073/pnas.0707678104
  • Zeidan F, Johnson SK, Gordon NS, Goolkasian P. Effects of brief and sham mindfulness meditation on mood and cardiovascular variables. J Alternative Complementary Med. 2010;16(8):867–873. doi:10.1089/acm.2009.0321
  • Steffen PR, Larson MJ. A brief mindfulness exercise reduces cardiovascular reactivity during a laboratory stressor paradigm. Mindfulness. 2015;6(4):803–811. doi:10.1007/s12671-014-0320-4
  • Khanpour Ardestani S, Karkhaneh M, Stein E, et al. Systematic review of mind-body interventions to treat myalgic encephalomyelitis/chronic fatigue syndrome. Medicina. 2021;57(7):652. doi:10.3390/medicina57070652
  • Kosunen I, Salminen M, Järvelä S, Ruonala A, Ravaja N, Jacucci G RelaWorld: neuroadaptive and immersive virtual reality meditation system. Proceedings of the 21st International Conference on Intelligent User Interfaces. 2016.
  • Moore M. The Rinzai Zen Way: A Guide to Practice. Boulder: ShambhalaPress; 2018.
  • Goldberg SB, Imhoff-Smith T, Bolt DM, et al. Testing the efficacy of a multicomponent, self-guided, smartphone-based meditation app: three-armed randomized controlled trial. JMIR Ment Health. 2020;7(11):e23825. doi:10.2196/23825
  • Wong KF, Teng J, Chee MWL, Doshi K, Lim J. Positive effects of mindfulness-based training on energy maintenance and the EEG correlates of sustained attention in a cohort of nurses. Front Hum Neurosci. 2018;12:12. doi:10.3389/fnhum.2018.00012
  • Lim J, Doshi K The breath counting task. Mindfulness, attention, and functional connectivity; 2018. Available from: https://www.researchgate.net/publication/324166741_The_Breath_CountingTask.
  • Levinson DB, Stoll EL, Kindy SD, Merry HL, Davidson RJ. A mind you can count on: validating breath counting as a behavioral measure of mindfulness. Front Psychol. 2014;5. doi:10.3389/fpsyg.2014.01202
  • Linardon J. Can acceptance, mindfulness, and self-compassion be learned by smartphone apps? A systematic and meta-analytic review of randomized controlled trials. Behav Ther. 2020;51(4):646–658. doi:10.1016/j.beth.2019.10.002
  • Bossi F, Zaninotto F, D’Arcangelo S, et al. Mindfulness-based online intervention increases well-being and decreases stress after Covid-19 lockdown. Sci Rep. 2022;12(1):6483. doi:10.1038/s41598-022-10361-2
  • Paudyal V, Sun S, Hussain R, Abutaleb MH, Hedima EW. Complementary and alternative medicines use in COVID-19: a global perspective on practice, policy and research. Res Social Admin Pharmacy. 2022;18(3):2524–2528. doi:10.1016/j.sapharm.2021.05.004
  • Ministry of Ayush (India). Guidelines for AYUSH practitioners for COVID-19. 2021. Available from: https://www.ayush.gov.in/ayush-guidelines.html. Accessed October 26, 2022.
  • Buchwitz TM, Maier F, Greuel A, et al. Pilot study of mindfulness training on the self-awareness of motor symptoms in Parkinson’s disease - a randomized controlled trial. Front Psychol. 2021;12:763350. doi:10.3389/fpsyg.2021.763350
  • Dissanayaka NN, Idu Jion F, Pachana NA, et al. Mindfulness for motor and nonmotor dysfunctions in Parkinson’s disease. Parkinson’s Dis. 2016;2016:7109052. doi:10.1155/2016/7109052
  • Scott LV, Dinan TG. The neuroendocrinology of chronic fatigue syndrome: focus on the hypothalamic-pituitary-adrenal axis. Funct Neurol. 1999;1(14):3–11.
  • Engel L, Andersen BL. Effects of body–mind training and relaxation stretching on persons with chronic toxic encephalopathy. Patient Educ Couns. 2000;39(2–3):155–161. doi:10.1016/S0738-3991(99)00017-8
  • Marks R. For COVID-19 Long Haulers, Few Answers, But Meditation and Peer Support Offer Some Relief. University of California San Francisco: Patient Care; 2021. Available from: https://www.ucsf.edu/news/2021/04/420206/covid-19-long-haulers-few-answers-meditation-and-peer-support-offer-some-relief. Accessed October 26, 2022.
  • Fischer R, Bortolini T, Karl JA, et al. Rapid review and meta-meta-analysis of self-guided interventions to address anxiety, depression, and stress during COVID-19 social distancing. Front Psychol. 2020;11:563876. doi:10.3389/fpsyg.2020.563876
  • Green J, Huberty J, Puzia M, Stecher C. The effect of meditation and physical activity on the mental health impact of COVID-19-related stress and attention to news among mobile app users in the United States: cross-sectional survey. JMIR Mental Health. 2021;8(4):e28479. doi:10.2196/28479
  • Sneller MC, Liang CJ, Marques AR, et al. A Longitudinal Study of COVID-19 Sequelae and Immunity: baseline Findings. Ann Intern Med. 2022;175(7):969–979. doi:10.7326/M21-4905
  • Elsenbruch S, Langhorst J, Popkirowa K, et al. Effects of mind-body therapy on quality of life and neuroendocrine and cellular immune functions in patients with ulcerative colitis. Psychother Psychosom. 2005;74(5):277–287. doi:10.1159/000086318
  • Gallegos AM, Lytle MC, Moynihan JA, Talbot NL. Mindfulness-based stress reduction to enhance psychological functioning and improve inflammatory biomarkers in trauma-exposed women: a pilot study. Psychol Trauma. 2015;7(6):525–532. doi:10.1037/tra0000053
  • Malarkey WB, Jarjoura D, Klatt M. Workplace based mindfulness practice and inflammation: a randomized trial. Brain Behav Immun. 2013;27(1):145–154. doi:10.1016/j.bbi.2012.10.009