348
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Depression and Cognitive Impairment: Current Understanding of Its Neurobiology and Diagnosis

ORCID Icon, , , , &
Pages 2783-2794 | Received 12 Sep 2022, Accepted 15 Nov 2022, Published online: 29 Nov 2022

References

  • Collins PY, Insel TR, Chockalingam A, Daar A, Maddox YT. Grand challenges in global mental health: integration in research, policy, and practice. PLoS Med. 2013;10(4):e1001434. doi:10.1371/journal.pmed.1001434
  • Culpepper L, Lam RW, McIntyre RS. Cognitive impairment in patients with depression: awareness, assessment, and management. J Clin Psychiatry. 2017;78(9):1383–1394. doi:10.4088/JCP.tk16043ah5c
  • Hasselbalch BJ, Knorr U, Hasselbalch SG, Gade A, Kessing LV. Cognitive deficits in the remitted state of unipolar depressive disorder. Neuropsychology. 2012;26(5):642–651. doi:10.1037/a0029301
  • Bora E, Yücel M, Pantelis C, Berk M. Meta-analytic review of neurocognition in bipolar II disorder. Acta Psychiatr Scand. 2011;123(3):165–174. doi:10.1111/j.1600-0447.2010.01638.x
  • Arts B, Jabben N, Krabbendam L, van Os J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med. 2008;38(6):771–785. doi:10.1017/s0033291707001675
  • Nierenberg AA, Husain MM, Trivedi MH, et al. Residual symptoms after remission of major depressive disorder with citalopram and risk of relapse: a STAR*D report. Psychol Med. 2010;40(1):41–50. doi:10.1017/s0033291709006011
  • Zhang W, Zhu N, Lai J, et al. Reliability and validity of THINC-it in evaluating cognitive function of patients with bipolar depression. Neuropsychiatr Dis Treat. 2020;16:2419–2428. doi:10.2147/ndt.S266642
  • Knight MJ, Fourrier C, Lyrtzis E, et al. Cognitive deficits in the THINC-Integrated Tool (THINC-it) are associated with psychosocial dysfunction in patients with major depressive disorder. J Clin Psychiatry. 2018;80(1). doi:10.4088/JCP.18m12472
  • McIntyre RS, Subramaniapillai M, Park C, et al. The THINC-it tool for cognitive assessment and measurement in major depressive disorder: sensitivity to change. Front Psychiatry. 2020;11:546. doi:10.3389/fpsyt.2020.00546
  • Russo M, Mahon K, Burdick KE. Measuring cognitive function in MDD: emerging assessment tools. Depress Anxiety. 2015;32(4):262–269. doi:10.1002/da.22297
  • Guo W, Liu F, Liu J, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine. 2015;94(9):e560. doi:10.1097/md.0000000000000560
  • Zhang L, Yu F, Hu Q, et al. Effects of SSRI antidepressants on attentional bias toward emotional scenes in first-episode depressive patients: evidence from an eye-tracking study. Psychiatry Investig. 2020;17(9):871–879. doi:10.30773/pi.2019.0345
  • Murphy M, Whitton AE, Deccy S, et al. Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology. 2020;45(12):2030–2037. doi:10.1038/s41386-020-0749-1
  • Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry. 2004;55(5):501–511. doi:10.1016/j.biopsych.2003.09.008
  • Broerse A, Crawford TJ, den Boer JA. Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia. 2001;39(7):742–756. doi:10.1016/s0028-3932(00)00155-x
  • Diefendorf AR, Dodge R. An experimental study of the ocular reactions of the insane from photographic records. Brain. 1908;31:451–489. doi:10.1093/brain/31.3.451
  • Brakemeier S, Sprenger A, Meyhöfer I, et al. Smooth pursuit eye movement deficits as a biomarker for psychotic features in bipolar disorder-Findings from the PARDIP study. Bipolar Disord. 2020;22(6):602–611. doi:10.1111/bdi.12865
  • Lipton RB, Levin S, Holzman PS. Horizontal and vertical pursuit eye movements, the oculocephalic reflex, and the functional psychoses. Psychiatry Res. 1980;3(2):193–203. doi:10.1016/0165-1781(80)90036-0
  • Abel LA, Friedman L, Jesberger J, Malki A, Meltzer HY. Quantitative assessment of smooth pursuit gain and catch-up saccades in schizophrenia and affective disorders. Biol Psychiatry. 1991;29(11):1063–1072. doi:10.1016/0006-3223(91)90248-K
  • Carvalho N, Laurent E, Noiret N, et al. Eye movement in unipolar and bipolar depression: a systematic review of the literature. Front Psychol. 2015;6:1809. doi:10.3389/fpsyg.2015.01809
  • Henderson JM, Shinkareva SV, Wang J, Luke SG, Olejarczyk J, Paterson K. Predicting cognitive state from eye movements. PLoS One. 2013;8(5):e64937. doi:10.1371/journal.pone.0064937
  • Li Y, Xu Y, Xia M, et al. Eye movement indices in the study of depressive disorder. Shanghai Archiv Psychiatry. 2016;28(6):326–334. doi:10.11919/j.issn.1002-0829.216078
  • Harezlak K, Kasprowski P. Application of eye tracking in medicine: a survey, research issues and challenges. Comput Med Imaging Graph. 2018;65:176–190. doi:10.1016/j.compmedimag.2017.04.006
  • Kowler E. Eye movements: the past 25 years. Vision Res. 2011;51(13):1457–1483. doi:10.1016/j.visres.2010.12.014
  • Cumming GD. Chapter 6 - eye movements and visual perception. In: Carterette EC, Friedman MP, editors. Perceptual Processing. Academic Press; 1978:221–255.
  • Snodderly DM. A physiological perspective on fixational eye movements. Vision Res. 2016;118:31–47. doi:10.1016/j.visres.2014.12.006
  • Steinman RM, Haddad GM, Skavenski AA, Wyman D. Miniature eye movement. Science. 1973;181(4102):810–819. doi:10.1126/science.181.4102.810
  • Hafed ZM, Clark JJ. Microsaccades as an overt measure of covert attention shifts. Vision Res. 2002;42(22):2533–2545. doi:10.1016/s0042-6989(02)00263-8
  • Xue C, Calapai A, Krumbiegel J, Treue S. Sustained spatial attention accounts for the direction bias of human microsaccades. Sci Rep. 2020;10(1):20604. doi:10.1038/s41598-020-77455-7
  • Denison RN, Yuval-Greenberg S, Carrasco M. Directing voluntary temporal attention increases fixational stability. J Neurosci. 2019;39(2):353–363. doi:10.1523/jneurosci.1926-18.2018
  • Willeke KF, Tian X, Buonocore A, Bellet J, Ramirez-Cardenas A, Hafed ZM. Memory-guided microsaccades. Nat Commun. 2019;10(1):3710. doi:10.1038/s41467-019-11711-x
  • Khademi F, Chen CY, Hafed ZM. Visual feature tuning of superior colliculus neural reafferent responses after fixational microsaccades. J Neurophysiol. 2020;123(6):2136–2153. doi:10.1152/jn.00077.2020
  • Hafed ZM, Goffart L, Krauzlis RJ. A neural mechanism for microsaccade generation in the primate superior colliculus. Science. 2009;323(5916):940–943. doi:10.1126/science.1166112
  • Takahashi J, Hirano Y, Miura K, et al. Eye movement abnormalities in major depressive disorder. Front Psychiatry. 2021;12:673443. doi:10.3389/fpsyt.2021.673443
  • Zhang D, Liu X, Xu L, et al. Effective differentiation between depressed patients and controls using discriminative eye movement features. J Affect Disord. 2022;307:237–243. doi:10.1016/j.jad.2022.03.077
  • Holzman PS, Proctor LR, Hughes DW. Eye-tracking patterns in schizophrenia. Science. 1973;181(4095):179–181. doi:10.1126/science.181.4095.179
  • Winograd-Gurvich C, Georgiou-Karistianis N, Fitzgerald PB, Millist L, White OB. Self-paced and reprogrammed saccades: differences between melancholic and non-melancholic depression. Neurosci Res. 2006;56(3):253–260. doi:10.1016/j.neures.2006.07.003
  • Munoz DP, Everling S. Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci. 2004;5(3):218–228. doi:10.1038/nrn1345
  • Ridderinkhof KR, van den Wildenberg WP, Segalowitz SJ, Carter CS. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004;56(2):129–140. doi:10.1016/j.bandc.2004.09.016
  • Haarmeier T, Kammer T. Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cerebral Cortex. 2010;20(9):2234–2243. doi:10.1093/cercor/bhp285
  • Thier P, Ilg UJ. The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol. 2005;15(6):645–652. doi:10.1016/j.conb.2005.10.013
  • Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV. A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage. 2001;14(2):310–321. doi:10.1006/nimg.2001.0788
  • Ikkai A, Curtis CE. Cortical activity time locked to the shift and maintenance of spatial attention. Cerebral Cortex. 2008;18(6):1384–1394. doi:10.1093/cercor/bhm171
  • de Haan B, Morgan PS, Rorden C. Covert orienting of attention and overt eye movements activate identical brain regions. Brain Res. 2008;1204:102–111. doi:10.1016/j.brainres.2008.01.105
  • Tanaka M, Lisberger SG. Enhancement of multiple components of pursuit eye movement by microstimulation in the arcuate frontal pursuit area in monkeys. J Neurophysiol. 2002;87(2):802–818. doi:10.1152/jn.00409.2001
  • Bremmer F, Distler C, Hoffmann KP. Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. J Neurophysiol. 1997;77(2):962–977. doi:10.1152/jn.1997.77.2.962
  • Colby CL, Duhamel JR, Goldberg ME. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol. 1993;69(3):902–914. doi:10.1152/jn.1993.69.3.902
  • Schlack A, Hoffmann KP, Bremmer F. Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J Physiol. 2003;551(Pt 2):551–561. doi:10.1113/jphysiol.2003.042994
  • Dicke PW, Barash S, Ilg UJ, Thier P. Single-neuron evidence for a contribution of the dorsal pontine nuclei to both types of target-directed eye movements, saccades and smooth-pursuit. Eur J Neurosci. 2004;19(3):609–624. doi:10.1111/j.0953-816x.2003.03137.x
  • Peng W, Chen Z, Yin L, Jia Z, Gong Q. Essential brain structural alterations in major depressive disorder: a voxel-wise meta-analysis on first episode, medication-naive patients. J Affect Disord. 2016;199:114–123. doi:10.1016/j.jad.2016.04.001
  • Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci Ther. 2018;24(11):994–1003. doi:10.1111/cns.12835
  • Malaspina D, Amador XF, Coleman EA, Mayr TL, Friedman JH, Sackeim HA. Smooth pursuit eye movement abnormality in severe major depression: effects of ECT and clinical recovery. J Neuropsychiatry Clin Neurosci. 1994;6(1):36–42. doi:10.1176/jnp.6.1.36
  • Kathmann N, Hochrein A, Uwer R, Bondy B. Deficits in gain of smooth pursuit eye movements in schizophrenia and affective disorder patients and their unaffected relatives. Am J Psychiatry. 2003;160(4):696–702. doi:10.1176/appi.ajp.160.4.696
  • Wang Y, Lyu HL, Tian XH, et al. The similar eye movement dysfunction between major depressive disorder, bipolar depression and bipolar mania. World J Biol Psychiatry. 2022:1–14. doi:10.1080/15622975.2022.2025616
  • García-Blanco AC, Perea M, Salmerón L. Attention orienting and inhibitory control across the different mood states in bipolar disorder: an emotional antisaccade task. Biol Psychol. 2013;94(3):556–561. doi:10.1016/j.biopsycho.2013.10.005
  • Schaeffer DJ, Gilbert KM, Hori Y, et al. Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey. NeuroImage. 2019;202:116147. doi:10.1016/j.neuroimage.2019.116147
  • Krauzlis RJ. Recasting the smooth pursuit eye movement system. J Neurophysiol. 2004;91(2):591–603. doi:10.1152/jn.00801.2003
  • Wardak C, Olivier E, Duhamel JR. The relationship between spatial attention and saccades in the frontoparietal network of the monkey. Eur J Neurosci. 2011;33(11):1973–1981. doi:10.1111/j.1460-9568.2011.07710.x
  • Becker W, Fuchs AF. Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vision Res. 1969;9(10):1247–1258. doi:10.1016/0042-6989(69)90112-6
  • Sweeney JA, Luna B, Keedy SK, McDowell JE, Clementz BA. fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems. NeuroImage. 2007;36(Suppl2):T54–60. doi:10.1016/j.neuroimage.2007.03.018
  • Dyckman KA, Camchong J, Clementz BA, McDowell JE. An effect of context on saccade-related behavior and brain activity. NeuroImage. 2007;36(3):774–784. doi:10.1016/j.neuroimage.2007.03.023
  • Lynch JC, Tian JR. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res. 2006;151:461–501. doi:10.1016/s0079-6123(05)51015-x
  • Makino Y, Yokosawa K, Takeda Y, Kumada T. Visual search and memory search engage extensive overlapping cerebral cortices: an fMRI study. NeuroImage. 2004;23(2):525–533. doi:10.1016/j.neuroimage.2004.06.026
  • Krauzlis RJ, Lovejoy LP, Zénon A. Superior colliculus and visual spatial attention. Annu Rev Neurosci. 2013;36:165–182. doi:10.1146/annurev-neuro-062012-170249
  • Morita K, Miura K, Kasai K, Hashimoto R. Eye movement characteristics in schizophrenia: a recent update with clinical implications. Neuropsychopharmacol rep. 2020;40(1):2–9. doi:10.1002/npr2.12087
  • Colantuoni C, Lipska BK, Ye T, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature. 2011;478(7370):519–523. doi:10.1038/nature10524
  • Hoffmann A, Ettinger U, Montoro C, Reyes del paso GA, Duschek S. Cerebral blood flow responses during prosaccade and antisaccade preparation in major depression. Eur Arch Psychiatry Clin Neurosci. 2019;269(7):813–822. doi:10.1007/s00406-018-0956-5
  • Richard-Devantoy S, Jollant F, Kefi Z, et al. Deficit of cognitive inhibition in depressed elderly: a neurocognitive marker of suicidal risk. J Affect Disord. 2012;140(2):193–199. doi:10.1016/j.jad.2012.03.006
  • Amador XF, Malaspina D, Sackeim HA, et al. Visual fixation and smooth pursuit eye movement abnormalities in patients with schizophrenia and their relatives. J Neuropsychiatry Clin Neurosci. 1995;7(2):197–206. doi:10.1176/jnp.7.2.197
  • Carvalho N, Noiret N, Vandel P, Monnin J, Chopard G, Laurent E. Saccadic eye movements in depressed elderly patients. PLoS One. 2014;9(8):e105355. doi:10.1371/journal.pone.0105355
  • Sweeney JA, Strojwas MH, Mann JJ, Thase ME. Prefrontal and cerebellar abnormalities in major depression: evidence from oculomotor studies. Biol Psychiatry. 1998;43(8):584–594. doi:10.1016/s0006-3223(97)00485-x
  • Barsznica Y, Noiret N, Lambert B, et al. Saccadic eye movements in elderly depressed patients with suicidal behaviors: an exploratory eye-tracking study. Front Psychol. 2021;12:712347. doi:10.3389/fpsyg.2021.712347
  • Bistricky SL, Ingram RE, Atchley RA. Facial affect processing and depression susceptibility: cognitive biases and cognitive neuroscience. Psychol Bull. 2011;137(6):998–1028. doi:10.1037/a0025348
  • Zwick JC, Wolkenstein L. Facial emotion recognition, theory of mind and the role of facial mimicry in depression. J Affect Disord. 2017;210:90–99. doi:10.1016/j.jad.2016.12.022
  • Strasburger LH. Depression—clinical, experimental, and theoretical aspects. Arch Gen Psychiatry. 1968;30(6):890.
  • Sanchez A, Vazquez C, Marker C, LeMoult J, Joormann J. Attentional disengagement predicts stress recovery in depression: an eye-tracking study. J Abnorm Psychol. 2013;122(2):303–313. doi:10.1037/a0031529
  • Gao L, Cai Y, Wang H, Wang G, Zhang Q, Yan X. Probing prefrontal cortex hemodynamic alterations during facial emotion recognition for major depression disorder through functional near-infrared spectroscopy. J Neural Eng. 2019;16(2):026026. doi:10.1088/1741-2552/ab0093
  • Murray EA, Fellows LK. Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology. 2022;47(1):163–179. doi:10.1038/s41386-021-01128-w
  • Mackey S, Petrides M. Architecture and morphology of the human ventromedial prefrontal cortex. Eur J Neurosci. 2014;40(5):2777–2796. doi:10.1111/ejn.12654
  • Hiser J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry. 2018;83(8):638–647. doi:10.1016/j.biopsych.2017.10.030
  • Yang M, Tsai SJ, Li CR. Concurrent amygdalar and ventromedial prefrontal cortical responses during emotion processing: a meta-analysis of the effects of valence of emotion and passive exposure versus active regulation. Brain Struct Funct. 2020;225(1):345–363. doi:10.1007/s00429-019-02007-3
  • Neubert FX, Mars RB, Sallet J, Rushworth MF. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proce Natl Acad Sci. 2015;112(20):E2695. doi:10.1073/pnas.1410767112
  • Emery NJ, Capitanio JP, Mason WA, Machado CJ, Mendoza SP, Amaral DG. The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behav Neurosci. 2001;115(3):515–544. doi:10.1037/0735-7044.115.3.515
  • García-García I, Kube J, Gaebler M, Horstmann A, Villringer A, Neumann J. Neural processing of negative emotional stimuli and the influence of age, sex and task-related characteristics. Neurosci Biobehav Rev. 2016;68:773–793. doi:10.1016/j.neubiorev.2016.04.020
  • Akhapkin RV, Volel BA, Shishorin RM, Ustyuzhanin DV, Petelin DS. Recognition of facial emotion expressions in patients with depressive disorders: a prospective, observational study. Neurol ther. 2021;10(1):225–234. doi:10.1007/s40120-021-00231-w
  • Lazarov A, Ben-Zion Z, Shamai D, Pine DS, Bar-Haim Y. Free viewing of sad and happy faces in depression: a potential target for attention bias modification. J Affect Disord. 2018;238:94–100. doi:10.1016/j.jad.2018.05.047
  • Bodenschatz CM, Skopinceva M, Ruß T, Kersting A, Suslow T. Face perception without subjective awareness - Emotional expressions guide early gaze behavior in clinically depressed and healthy individuals. J Affect Disord. 2020;265:91–98. doi:10.1016/j.jad.2020.01.039
  • Luo L, Becker B, Zheng X, et al. A dimensional approach to determine common and specific neurofunctional markers for depression and social anxiety during emotional face processing. Hum Brain Mapp. 2018;39(2):758–771. doi:10.1002/hbm.23880
  • Sears C, Quigley L, Fernandez A, Newman K, Dobson K. The reliability of attentional biases for emotional images measured using a free-viewing eye-tracking paradigm. Behav Res Methods. 2019;51(6):2748–2760. doi:10.3758/s13428-018-1147-z
  • Bodenschatz CM, Skopinceva M, Kersting A, Quirin M, Suslow T. Implicit negative affect predicts attention to sad faces beyond self-reported depressive symptoms in healthy individuals: an eye-tracking study. Psychiatry Res. 2018;265:48–54. doi:10.1016/j.psychres.2018.04.007
  • Duque A, Vázquez C. Double attention bias for positive and negative emotional faces in clinical depression: evidence from an eye-tracking study. J Behav Ther Exp Psychiatry. 2015;46:107–114. doi:10.1016/j.jbtep.2014.09.005
  • Figueiredo GR, Ripka WL, Romaneli EFR, Ulbricht L. Attentional bias for emotional faces in depressed and non-depressed individuals: an eye-tracking study. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference; 2019:5419–5422. doi:10.1109/embc.2019.8857878.
  • Bodenschatz CM, Czepluch F, Kersting A, Suslow T. Efficient visual search for facial emotions in patients with major depression. BMC Psychiatry. 2021;21(1):92. doi:10.1186/s12888-021-03093-6
  • Li M, Lu S, Wang G, Feng L, Fu B, Zhong N. Alleviated negative rather than positive attentional bias in patients with depression in remission: an eye-tracking study. J Int Med Res. 2016;44(5):1072–1086. doi:10.1177/0300060516662134
  • Isaac L, Vrijsen JN, Rinck M, Speckens A, Becker ES. Shorter gaze duration for happy faces in current but not remitted depression: evidence from eye movements. Psychiatry Res. 2014;218(1–2):79–86. doi:10.1016/j.psychres.2014.04.002
  • Fales CL, Barch DM, Rundle MM, et al. Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol Psychiatry. 2008;63(4):377–384. doi:10.1016/j.biopsych.2007.06.012
  • Groenewold NA, Opmeer EM, de Jonge P, Aleman A, Costafreda SG. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2013;37(2):152–163. doi:10.1016/j.neubiorev.2012.11.015
  • Disner SG, Shumake JD, Beevers CG. Self-referential schemas and attentional bias predict severity and naturalistic course of depression symptoms. Cogn Emot. 2017;31(4):632–644. doi:10.1080/02699931.2016.1146123
  • Woolridge SM, Harrison GW, Best MW, Bowie CR. Attention bias modification in depression: a randomized trial using a novel, reward-based, eye-tracking approach. J Behav Ther Exp Psychiatry. 2021;71:101621. doi:10.1016/j.jbtep.2020.101621
  • Poletti B, Carelli L, Solca F, et al. An eye-tracking controlled neuropsychological battery for cognitive assessment in neurological diseases. Neurol Sci. 2017;38(4):595–603. doi:10.1007/s10072-016-2807-3
  • Goldman-Rakic PS. Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93(24):13473–13480. doi:10.1073/pnas.93.24.13473
  • Landgraf S, Amado I, Bourdel MC, Leonardi S, Krebs MO. Memory-guided saccade abnormalities in schizophrenic patients and their healthy, full biological siblings. Psychol Med. 2008;38(6):861–870. doi:10.1017/s0033291707001912
  • Sajad A, Sadeh M, Crawford JD. Spatiotemporal transformations for gaze control. Physiol Rep. 2020;8(16):e14533. doi:10.14814/phy2.14533
  • Khanna SB, Snyder AC, Smith MA. Distinct sources of variability affect eye movement preparation. J Neurosci. 2019;39(23):4511–4526. doi:10.1523/jneurosci.2329-18.2019
  • Sadeh M, Sajad A, Wang H, Yan X, Crawford JD. The influence of a memory delay on spatial coding in the superior colliculus: is visual always visual and motor always motor? Front Neural Circuits. 2018;12:74. doi:10.3389/fncir.2018.00074
  • Holmes CD, Papadimitriou C, Snyder LH. Dissociation of LFP power and tuning in the frontal cortex during memory. J Neurosci. 2018;38(38):8177–8186. doi:10.1523/jneurosci.3629-17.2018
  • Schneider L, Dominguez-Vargas AU, Gibson L, Kagan I, Wilke M. Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades. J Neurophysiol. 2020;123(1):367–391. doi:10.1152/jn.00432.2019
  • Katz CN, Patel K, Talakoub O, Groppe D, Hoffman K, Valiante TA. Differential generation of saccade, fixation, and image-onset event-related potentials in the human mesial temporal lobe. Cerebral Cortex. 2020;30(10):5502–5516. doi:10.1093/cercor/bhaa132
  • Black DW, Grant JE. DSM-5TM Guidebook: The Essential Companion to the Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Pub; 2015:335–340.
  • Wang CA, Huang J, Yep R, Munoz DP. Comparing pupil light response modulation between saccade planning and working memory. J Cognit. 2018;1(1):33. doi:10.5334/joc.33
  • Sprenger A, Hanssen H, Hagedorn I, et al. Eye movement deficits in X-linked dystonia-parkinsonism are related to striatal degeneration. Parkinsonism Relat Disord. 2019;61:170–178. doi:10.1016/j.parkreldis.2018.10.016
  • Moroso A, Ruet A, Lamargue-Hamel D, et al. Preliminary evidence of the cerebellar role on cognitive performances in clinically isolated syndrome. J Neurol Sci. 2018;385:1–6. doi:10.1016/j.jns.2017.11.037
  • García-Blanco A, Salmerón L, Perea M, Livianos L. Attentional biases toward emotional images in the different episodes of bipolar disorder: an eye-tracking study. Psychiatry Res. 2014;215(3):628–633. doi:10.1016/j.psychres.2013.12.039
  • Zhu J, Wang Z, Gong T, et al. An improved classification model for depression detection using EEG and eye tracking data. IEEE Trans Nanobioscience. 2020;19(3):527–537. doi:10.1109/TNB.2020.2990690
  • Ding X, Yue X, Zheng R, Bi C, Li D, Yao G. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. J Affect Disord. 2019;251:156–161. doi:10.1016/j.jad.2019.03.058
  • Alghowinem S, Goecke R, Wagner M, Parker G, Breakspear M. Eye movement analysis for depression detection. IEEE Int Conf Image Process. 2013:4220–4224. doi:10.1109/ICIP.2013.6738869
  • Işbilir E, Çakır M, Acartürk C, Neuroscience AT. Towards a multimodal model of cognitive workload through synchronous optical brain imaging and eye tracking measures. Front Hum Neurosci. 2019;13:375. doi:10.3389/fnhum.2019.00375
  • Li H, Hsueh Y, Yu H, Kitzmann KM. viewing fantastical events in animated television shows: immediate effects on Chinese preschoolers’ executive function. Front Psychol. 2020;11. doi:10.3389/fpsyg.2020.583174
  • Rca B, Xian ZC, Jan D, It E, Afdch A, Jhcd E. Facial and neural mechanisms during interactive disclosure of biographical information. NeuroImage. 2020;226:117572.
  • Grossmann T, Missana M, Krol KM, Dehaene-Lambertz G. The neurodevelopmental precursors of altruistic behavior in infancy. PLoS Biol. 2018;16(9):e2005281. doi:10.1371/journal.pbio.2005281
  • Brockington G, Balardin JB, Morais GZ, et al. From the laboratory to the classroom: the potential of functional near-infrared spectroscopy in educational neuroscience. Front Psychol. 2018;9. doi:10.3389/fpsyg.2018.01840
  • Key A, Venker C, Sandbank M. Psychophysiological and eye-tracking markers of speech and language processing in neurodevelopmental disorders: new options for difficult-to-test populations. Am J Intellect Dev Disabil. 2020;125(6):465–474. doi:10.1352/1944-7558-125.6.465
  • Barzy M, Black J, Williams D, Ferguson HJ. Autistic adults anticipate and integrate meaning based on the speaker’s voice: evidence from eye-tracking and event-related potentials. J Exp Psychol. 2019;149(6):1097–1115. doi:10.1037/xge0000705
  • Dias EC, Heather S, Antígona M, et al. Neurophysiological, oculomotor, and computational modeling of impaired reading ability in schizophrenia. Schizophr Bull. 2020;47(1):97–107.