57
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Understanding of Consciousness in Absence Seizures: A Literature Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1345-1353 | Received 24 Feb 2024, Accepted 14 Jun 2024, Published online: 24 Jun 2024

References

  • Eapen BC, Georgekutty J, Subbarao B, Bavishi S, Cifu DX. Disorders of consciousness. Phys Med Rehabil Clin N Am. 2017;28(2):245–258. doi:10.1016/j.pmr.2016.12.003
  • Danielson NB, Guo JN, Blumenfeld H. The default mode network and altered consciousness in epilepsy. Behav Neurol. 2011;24(1):55–65. doi:10.3233/ben-2011-0310
  • Wang C, Vander Voort W, Haus BM, Carter CW. COVID-19 and youth sports: what are the risks of getting back on the field too quickly? Pediatr Ann. 2021;50(11):e465–e469. doi:10.3928/19382359-20211019-01
  • Sadleir LG, Scheffer IE, Smith S, Connolly MB, Farrell K. Automatisms in absence seizures in children with idiopathic generalized epilepsy. Arch Neurol. 2009;66(6):729–734. doi:10.1001/archneurol.2009.108
  • Blumenfeld H. Consciousness and epilepsy: why are patients with absence seizures absent? Prog Brain Res. 2005;150:271–286. doi:10.1016/s0079-6123(05)50020-7
  • Carney PW, Jackson GD. Insights into the mechanisms of absence seizure generation provided by EEG with functional MRI. Front Neurol. 2014;5:162. doi:10.3389/fneur.2014.00162
  • Velazquez JL, Huo JZ, Dominguez LG, Leshchenko Y, Snead OC. Typical versus atypical absence seizures: network mechanisms of the spread of paroxysms. Epilepsia. 2007;48(8):1585–1593. doi:10.1111/j.1528-1167.2007.01120.x
  • Guo JN, Kim R, Chen Y, et al. Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study. Lancet Neurol. 2016;15(13):1336–1345. doi:10.1016/s1474-4422(16)30295-2
  • Kumar A, Lyzhko E, Hamid L, Srivastav A, Stephani U, Japaridze N. Neuronal networks underlying ictal and subclinical discharges in childhood absence epilepsy. J Neurol. 2023;270(3):1402–1415. doi:10.1007/s00415-022-11462-8
  • Bai X, Vestal M, Berman R, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci. 2010;30(17):5884–5893. doi:10.1523/jneurosci.5101-09.2010
  • Benuzzi F, Ballotta D, Mirandola L, et al. An EEG-fMRI study on the termination of generalized Spike-and-Wave discharges in absence epilepsy. PLoS One. 2015;10(7):e0130943. doi:10.1371/journal.pone.0130943
  • Berman R, Negishi M, Vestal M, et al. Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia. 2010;51(10):2011–2022. doi:10.1111/j.1528-1167.2010.02652.x
  • Carney PW, Masterton RA, Harvey AS, Scheffer IE, Berkovic SF, Jackson GD. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology. 2010;75(10):904–911. doi:10.1212/WNL.0b013e3181f11c06
  • Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A. 2005;102(42):15236–15240. doi:10.1073/pnas.0504935102
  • Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K. Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia. 2006;47(2):444–448. doi:10.1111/j.1528-1167.2006.00443.x
  • Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res. 2009;87(2–3):160–168. doi:10.1016/j.eplepsyres.2009.08.018
  • Moeller F, Siebner HR, Wolff S, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia. 2008;49(9):1510–1519. doi:10.1111/j.1528-1167.2008.01626.x
  • Moeller F, LeVan P, Muhle H, et al. Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia. 2010;51(10):2000–2010. doi:10.1111/j.1528-1167.2010.02698.x
  • Bilo L, Meo R, de Leva MF, Vicidomini C, Salvatore M, Pappatà S. Thalamic activation and cortical deactivation during typical absence status monitored using [18F]FDG-PET: a case report. Seizure. 2010;19(3):198–201. doi:10.1016/j.seizure.2010.01.009
  • Shimogori K, Doden T, Oguchi K, Hashimoto T. Thalamic and cerebellar hypermetabolism and cortical hypometabolism during absence status epilepticus. BMJ Case Rep. 2017;2017. doi:10.1136/bcr-2017-220139
  • Nehlig A, Valenti MP, Thiriaux A, Hirsch E, Marescaux C, Namer IJ. Ictal and interictal perfusion variations measured by SISCOM analysis in typical childhood absence seizures. Epileptic Disord. 2004;6(4):247–253.
  • Kumar A, Lyzhko E, Hamid L, Srivastav A, Stephani U, Japaridze N. Differentiating ictal/subclinical spikes and waves in childhood absence epilepsy by spectral and network analyses: a pilot study. Clin Neurophysiol. 2021;132(9):2222–2231. doi:10.1016/j.clinph.2021.06.011
  • Jiang W, Wu C, Xiang J, et al. Dynamic neuromagnetic network changes of seizure termination in absence epilepsy: a magnetoencephalography study. Front Neurol. 2019;10:703. doi:10.3389/fneur.2019.00703
  • Shi Q, Zhang T, Miao A, et al. Differences between interictal and ictal generalized spike-wave discharges in childhood absence epilepsy: a MEG study. Front Neurol. 2019;10:1359. doi:10.3389/fneur.2019.01359
  • Sun J, Li Y, Zhang K, et al. Frequency-dependent dynamics of functional connectivity networks during seizure termination in childhood absence epilepsy: a magnetoencephalography study. Front Neurol. 2021;12:744749. doi:10.3389/fneur.2021.744749
  • Sun Y, Li Y, Sun J, et al. Functional reorganization of brain regions into a network in childhood absence epilepsy: a magnetoencephalography study. Epilepsy Behav. 2021;122:108117. doi:10.1016/j.yebeh.2021.108117
  • Sun F, Wang S, Wang Y, et al. Differences in generation and maintenance between ictal and interictal generalized spike-and-wave discharges in childhood absence epilepsy: a magnetoencephalography study. Epilepsy Behav. 2023;148:109440. doi:10.1016/j.yebeh.2023.109440
  • Sun F, Wang Y, Li Y, et al. Variation in functional networks between clinical and subclinical discharges in childhood absence epilepsy: a multi-frequency MEG study. Seizure. 2023;111:109–121. doi:10.1016/j.seizure.2023.08.005
  • Tenney JR, Fujiwara H, Horn PS, Jacobson SE, Glauser TA, Rose DF. Focal corticothalamic sources during generalized absence seizures: a MEG study. Epilepsy Res. 2013;106(1–2):113–122. doi:10.1016/j.eplepsyres.2013.05.006
  • Iannetti P, Spalice A, De Luca PF, Boemi S, Festa A, Maini CL. Ictal single photon emission computed tomography in absence seizures: apparent implication of different neuronal mechanisms. J Child Neurol. 2001;16(5):339–344. doi:10.1177/088307380101600506
  • Wang Y, Li Y, Sun F, et al. Altered neuromagnetic activity in default mode network in childhood absence epilepsy. Front Neurosci. 2023;17:1133064. doi:10.3389/fnins.2023.1133064
  • Aarabi A, Wallois F, Grebe R. Does spatiotemporal synchronization of EEG change prior to absence seizures? Brain Res. 2008;1188:207–221. doi:10.1016/j.brainres.2007.10.048
  • McCafferty C, Gruenbaum BF, Tung R, et al. Decreased but diverse activity of cortical and thalamic neurons in consciousness-impairing rodent absence seizures. Nat Commun. 2023;14(1):117. doi:10.1038/s41467-022-35535-4
  • Shimazono Y, Hirai T, Okuma T, Fukuda T, Yamamasu E. Disturbance of Conciousness in Petit Mai Epilepsy. Epilepsia. 1937;B1(1):49–55. doi:10.1111/j.1528-1157.1937.tb05578.x
  • Mirsky AF, Vanburen JM. On the nature of the “absence” in centrencephalic epilepsy: a study of some behavioral, electroencephalographic and autonomic factors. Electroencephalogr Clin Neurophysiol. 1965;18:334–348. doi:10.1016/0013-4694(65)90053-2
  • Depaulis A, Charpier S. Pathophysiology of absence epilepsy: insights from genetic models. Neurosci Lett. 2018;667:53–65. doi:10.1016/j.neulet.2017.02.035
  • Polack PO, Mahon S, Chavez M, Charpier S. Inactivation of the somatosensory cortex prevents paroxysmal oscillations in cortical and related thalamic neurons in a genetic model of absence epilepsy. Cereb Cortex. 2009;19(9):2078–2091. doi:10.1093/cercor/bhn237
  • Sitnikova E, van Luijtelaar G. Cortical control of generalized absence seizures: effect of lidocaine applied to the somatosensory cortex in WAG/Rij rats. Brain Res. 2004;1012(1–2):127–137. doi:10.1016/j.brainres.2004.03.041
  • Gallagher MJ. Neuronal physiology of generalized seizures: the 4 horsemen of absence epilepsy. Epilepsy Curr. 2023;23(4):262–264. doi:10.1177/15357597231172322
  • Youngblood MW, Chen WC, Mishra AM, et al. Rhythmic 3–4Hz discharge is insufficient to produce cortical BOLD fMRI decreases in generalized seizures. Neuroimage. 2015;109:368–377. doi:10.1016/j.neuroimage.2014.12.066
  • Mishra AM, Ellens DJ, Schridde U, et al. Where fMRI and electrophysiology agree to disagree: corticothalamic and striatal activity patterns in the WAG/Rij rat. J Neurosci. 2011;31(42):15053–15064. doi:10.1523/jneurosci.0101-11.2011
  • Meyer J, Maheshwari A, Noebels J, Smirnakis S. Asynchronous suppression of visual cortex during absence seizures in stargazer mice. Nat Commun. 2018;9(1):1938. doi:10.1038/s41467-018-04349-8
  • Springer M, Khalaf A, Vincent P, et al. A machine-learning approach for predicting impaired consciousness in absence epilepsy. Ann Clin Transl Neurol. 2022;9(10):1538–1550. doi:10.1002/acn3.51647
  • Engel J, Kuhl DE, Phelps ME. Patterns of human local cerebral glucose metabolism during epileptic seizures. Science. 1982;218(4567):64–66. doi:10.1126/science.6981843
  • Theodore WH, Brooks R, Margolin R, et al. Positron emission tomography in generalized seizures. Neurology. 1985;35(5):684–690. doi:10.1212/wnl.35.5.684
  • Yeni SN, Kabasakal L, Yalçinkaya C, Nişli C, Dervent A. Ictal and interictal SPECT findings in childhood absence epilepsy. Seizure. 2000;9(4):265–269. doi:10.1053/seiz.2000.0400
  • Roche-Labarbe N, Zaaimi B, Berquin P, Nehlig A, Grebe R, Wallois F. NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children. Epilepsia. 2008;49(11):1871–1880. doi:10.1111/j.1528-1167.2008.01711.x
  • Crunelli V, Lőrincz ML, McCafferty C, et al. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain. 2020;143(8):2341–2368. doi:10.1093/brain/awaa072
  • Moshé SL, Galanopoulou AS. Searching for the mechanisms of consciousness in epilepsy. Lancet Neurol. 2016;15(13):1298–1299. doi:10.1016/s1474-4422(16)30278-2
  • Hirsch E, French J, Scheffer IE, et al. ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE task force on nosology and definitions. Epilepsia. 2022;63(6):1475–1499. doi:10.1111/epi.17236
  • Mueckler M, Caruso C, Baldwin SA, et al. Sequence and structure of a human glucose transporter. Science. 1985;229(4717):941–945. doi:10.1126/science.3839598
  • Arsov T, Mullen SA, Damiano JA, et al. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia. 2012;53(12):e204–e207. doi:10.1111/epi.12007
  • Mullen SA, Suls A, De Jonghe P, Berkovic SF, Scheffer IE. Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology. 2010;75(5):432–440. doi:10.1212/WNL.0b013e3181eb58b4
  • Suls A, Mullen SA, Weber YG, et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol. 2009;66(3):415–419. doi:10.1002/ana.21724
  • De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703–709. doi:10.1056/NEJM199109053251006
  • Koch H, Weber YG. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav. 2019;91:90–93. doi:10.1016/j.yebeh.2018.06.010
  • Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001;28(1):49–52. doi:10.1038/ng0501-49
  • Tanaka M, Olsen RW, Medina MT, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet. 2008;82(6):1249–1261. doi:10.1016/j.ajhg.2008.04.020
  • Maljevic S, Krampfl K, Cobilanschi J, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol. 2006;59(6):983–987. doi:10.1002/ana.20874
  • Shen D, Hernandez CC, Shen W, et al. De novo GABRG2 mutations associated with epileptic encephalopathies. Brain. 2017;140(1):49–67. doi:10.1093/brain/aww272
  • Epi4K Consortium and Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–221. doi:10.1038/nature12439
  • Cossette P, Liu L, Brisebois K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002;31(2):184–189. doi:10.1038/ng885
  • Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol. 2003;54(2):239–243. doi:10.1002/ana.10607
  • Heron SE, Khosravani H, Varela D, et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol. 2007;62(6):560–568. doi:10.1002/ana.21169