122
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Toll-Like Receptor (TLR) 1, 2, and 6 Gene Polymorphisms Support Evidence of Innate Immune Factors in Schizophrenia

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 2353-2361 | Received 30 May 2023, Accepted 14 Sep 2023, Published online: 01 Nov 2023

References

  • McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77(2):201–210. doi:10.1001/jamapsychiatry.2019.3360
  • Charlson FJ, Ferrari AJ, Santomauro DF, et al. Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr Bull. 2018;44(6):1195–1203. doi:10.1093/schbul/sby058
  • Benros ME, Nielsen PR, Nordentoft M, et al. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303–1310. doi:10.1176/appi.ajp.2011.11030516
  • Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–270. doi:10.1016/S2215-0366(14)00122-9
  • Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83. doi:10.1093/schbul/sbx035
  • Khandaker GM, Dantzer R, Jones PB. Immunopsychiatry: important facts. Psychol Med. 2017;47(13):2229–2237. doi:10.1017/S0033291717000745
  • Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93. doi:10.1016/j.neubiorev.2013.11.006
  • Lee KW, Woon PS, Teo YY, Sim K. Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev. 2012;36(1):556–571. doi:10.1016/j.neubiorev.2011.09.001
  • Lee SH, DeCandia TR, Ripke S, Yang J. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet. 2012;44(3):247–250. doi:10.1038/ng.1108
  • Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: a systematic review. J Psychiatr Res. 2019;114:178–207. doi:10.1016/j.jpsychires.2019.04.007
  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–427. doi:10.1038/nature13595
  • Lin JR, Cai Y, Zhang Q, et al. Integrated post-GWAS analysis sheds new light on the disease mechanisms of schizophrenia. Genetics. 2016;204(4):1587–1600. doi:10.1534/genetics.116.187195
  • García-Bueno B, Gassó P, MacDowell KS, et al. Evidence of activation of the Toll-like receptor-4 proinflammatory pathway in patients with schizophrenia. J Psychiatry Neurosci. 2016;41(3):E46–E55. doi:10.1503/jpn.150195
  • Kéri S, Szabó C, Kelemen O. Uniting the neurodevelopmental and immunological hypotheses: neuregulin 1 receptor ErbB and Toll-like receptor activation in first-episode schizophrenia. Sci Rep. 2017;7(1):4147. doi:10.1038/s41598-017-03736-3
  • Kozłowska E, Agier J, Wysokiński A, et al. The expression of toll-like receptors in peripheral blood mononuclear cells is altered in schizophrenia. Psychiatry Res. 2019;272:540–550. doi:10.1016/j.psychres.2018.12.138
  • Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci. 2019;26(1):90. doi:10.1186/s12929-019-0584-z
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–241. doi:10.1016/j.cell.2004.07.002
  • Caso JR, Balanzá-Martínez V, Palomo T, García-Bueno B. The microbiota and gut-brain axis: contributions to the immunopathogenesis of schizophrenia. Curr Pharm Des. 2016;22(40):6122–6133. doi:10.2174/1381612822666160906160911
  • Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006. doi:10.1101/gr.229102
  • Gaudeman WJ, Morrison JM Quanto 1.2.4: a computer program for power and sample size calculations for genetic-epidemiology studies. University of Southern California; 2019. Available from: http://biostats.usc.edu/Quanto.html. Accessed October 27, 2023.
  • Hervada VX, Santiago IP, Vazquez F, et al. Epidad 3.0 Programa para análisis epidemiológicos de datos tabulados. Rev Esp Salud Publica. 2004;78(2):277–280. doi:10.1590/S1135-57272004000200013
  • Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–265. doi:10.1093/bioinformatics/bth457
  • Tregouet DA, Garelle V. A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics. 2007;23(8):1038–1039. doi:10.1093/bioinformatics/btm058
  • Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003;19(3):376–382. doi:10.1093/bioinformatics/btf869
  • Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol. 2003;24(2):150–157. doi:10.1002/gepi.10218
  • Moore JH MDR 101—Part 4—results. Epistasis blog from the computational genetics laboratory at the University of Pennsylvania; 2019. Available from: http://www.epistasisblog.org/2006/12/. Accessed October 27, 2023.
  • Castle DJ, Murray RM. The neurodevelopmental basis of sex differences in schizophrenia. Psychol Med. 1991;21(3):565–575. doi:10.1017/s0033291700022194
  • Canuso CM, Pandina G. Gender and schizophrenia. Psychopharmacol Bull. 2007;40(4):178–190.
  • Kahn RS, Sommer IE, Murray RM, et al. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067. doi:10.1038/nrdp.2015.67
  • Avramopoulos D, Pearce BD, McGrath J, et al. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One. 2015;10(3):e0116696. doi:10.1371/journal.pone.0116696
  • Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res. 2010;122(1–3):38–42. doi:10.1016/j.schres.2010.07.001
  • Purcell SM, Wray NR; International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–752. doi:10.1038/nature08185
  • Presnyak V, Alhusaini N, Chen YH, et al. Codon optimality is a major determinant of mRNA stability. Cell. 2015;160(6):1111–1124. doi:10.1016/j.cell.2015.02.029
  • Forrest ME, Pinkard O, Martin S, et al. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS One. 2020;15(2):e0228730. doi:10.1371/journal.pone.0228730
  • Sharma I, Priya I, Sharma S, et al. Association of toll-like receptor 2 gene polymorphism (rs3804099) with susceptibility to Schizophrenia risk in the Dogra population of Jammu region, North India. Eur J Psychiatry. 2022;36(2):106–113. doi:10.1016/j.ejpsy.2022.02.001
  • Oliveira J, Etain B, Lajnef M, et al. Combined effect of TLR2 gene polymorphism and early life stress on the age at onset of bipolar disorders. PLoS One. 2015;10(3):e0119702. doi:10.1371/journal.pone.0119702
  • Al-Haddad BJS, Jacobsson B, Chabra S, et al. Long-term risk of neuropsychiatric disease after exposure to infection in utero. JAMA Psychiatry. 2019;76(6):594–602. doi:10.1001/jamapsychiatry.2019.0029
  • Venkatasubramanian G, Debnath M. The TRIPS (Toll-like receptors in immuno-inflammatory pathogenesis) Hypothesis: a novel postulate to understand schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:301–311. doi:10.1016/j.pnpbp.2013.04.001
  • Abrahams VM, Bole-Aldo P, Kim YM, et al. Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol. 2004;173(7):4286–4296. doi:10.4049/jimmunol.173.7.4286
  • Royo JL. Hardy Weinberg equilibrium disturbances in case-control studies lead to non-conclusive results. Cell J. 2021;22(4):575. doi:10.22074/cellj.2021.7195
  • Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86–97. doi:10.1016/S0140-6736(15)01121-6