160
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Knockdown of LCN2 Attenuates Brain Injury After Intracerebral Hemorrhage via Suppressing Pyroptosis

, , , &
Pages 83-99 | Received 13 Sep 2023, Accepted 09 Jan 2024, Published online: 16 Jan 2024

References

  • Unnithan AKA, Mehta P. Hemorrhagic stroke; 2020.
  • Ziai WC, Carhuapoma JR. Intracerebral hemorrhage. Continuum. 2018;24(6):1603–1622.
  • Shao Z, Tu S, Shao A. Pathophysiological mechanisms and potential therapeutic targets in intracerebral hemorrhage. Front Pharmacol. 2019;10:1079. doi:10.3389/fphar.2019.01079
  • McKenzie BA, Dixit VM, Power C. Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci. 2020;43(1):55–73. doi:10.1016/j.tins.2019.11.005
  • Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Proliferation. 2019;52(2):e12563. doi:10.1111/cpr.12563
  • Luo Q, Shi X, Ding J, et al. Network pharmacology integrated molecular docking reveals the antiosteosarcoma mechanism of biochanin A. Evid Based Complement Alternat Med. 2019;2019:1410495.
  • Wu J, Lin S, Wan B, Velani B, Zhu Y. Pyroptosis in liver disease: new insights into disease mechanisms. Aging Dis. 2019;10(5):1094. doi:10.14336/AD.2019.0116
  • Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer. Biomed Pharmacother. 2020;121:109595.
  • Hu Y, Wang B, Li S, Yang S. Pyroptosis, and its role in central nervous system disease. J Mol Biol. 2022;434(4):167379.
  • Shi M, Chen J, Liu T, et al. Protective effects of remimazolam on cerebral ischemia/reperfusion injury in rats by inhibiting of NLRP3 inflammasome-dependent pyroptosis. Drug Des Devel Ther. 2022;16:413. doi:10.2147/DDDT.S344240
  • Yin K, Lu H, Zhang Y, et al. Secondary brain injury after polystyrene microplastic-induced intracerebral hemorrhage is associated with inflammation and pyroptosis. Chem Biol Interact. 2022;367:110180. doi:10.1016/j.cbi.2022.110180
  • Song D, Yeh C-T, Wang J, Guo F. Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.989503
  • Chen G, Gao C, Yan Y, et al. Inhibiting Er stress weakens neuronal pyroptosis in a mouse acute hemorrhagic stroke model. Mol Neurobiol. 2020;57(12):5324–5335. doi:10.1007/s12035-020-02097-9
  • Li X, Wang T, Zhang D, et al. Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction. Neuropharmacology. 2018;141:305–315. doi:10.1016/j.neuropharm.2018.09.015
  • Lin X, Ye H, Siaw-Debrah F, et al. AC-YVAD-CMK inhibits pyroptosis and improves functional outcome after intracerebral hemorrhage. Biomed Res Int. 2018;2018:1–10. doi:10.1155/2018/3706047
  • Ahn H, Lee G, Kim J, et al. NLRP3 triggers attenuate lipocalin-2 expression independent with inflammasome activation. Cells. 2021;10(7):1660. doi:10.3390/cells10071660
  • Yang W-S, Shen Y-Q, Yang X, et al. MicroRNA transcriptomics analysis identifies dysregulated hedgehog signaling pathway in a mouse model of acute intracerebral hemorrhage exposed to hyperglycemia. J Stroke Cerebrovascular Dis. 2022;31(3):106281. doi:10.1016/j.jstrokecerebrovasdis.2021.106281
  • Al Jaberi S, Cohen A, D’Souza C, et al. Lipocalin-2: structure, function, distribution and role in metabolic disorders. Biomed Pharmacother. 2021;142:112002. doi:10.1016/j.biopha.2021.112002
  • Tang W, Ma J, Gu R, Lei B, Ding X, Xu G. Light-induced lipocalin 2 facilitates cellular apoptosis by positively regulating reactive oxygen species/Bim signaling in retinal degeneration. Invest Ophthalmol Visual Sci. 2018;59(15):6014–6025. doi:10.1167/iovs.18-25213
  • Shin HJ, Jeong EA, Lee JY, et al. Lipocalin-2 deficiency reduces oxidative stress and neuroinflammation and results in attenuation of kainic acid-induced hippocampal cell death. Antioxidants. 2021;10(1):100. doi:10.3390/antiox10010100
  • Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther. 2018;11:8099. doi:10.2147/OTT.S181223
  • Dekens DW, Eisel UL, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJ. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev. 2021;70:101414. doi:10.1016/j.arr.2021.101414
  • Llorens F, Hermann P, Villar-Piqué A, et al. Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia. Nat Commun. 2020;11(1):1–11. doi:10.1038/s41467-020-14373-2
  • Song J, Kim OY. Perspectives in Lipocalin-2: emerging biomarker for medical diagnosis and prognosis for Alzheimer’s disease. Clin Nutr Res. 2018;7(1):1–10. doi:10.7762/cnr.2018.7.1.1
  • Luo C, Zhou S, Yin S, et al. Lipocalin-2 and cerebral stroke. Front Mol Neurosci. 2022;2022:15.
  • Liu L, Wang S, Xu R, et al. Experimental intracerebral haemorrhage: description of a semi-coagulated autologous blood model in rats. Neurological Res. 2015;37(10):874–879. doi:10.1179/1743132815Y.0000000067
  • Guo Q, Xie M, Guo M, Yan F, Li L, Liu R. ZEB2, interacting with MDM2, contributes to the dysfunction of brain microvascular endothelial cells and brain injury after intracerebral hemorrhage. Cell Cycle. 2021;20(17):1692–1707. doi:10.1080/15384101.2021.1959702
  • Matsumura K, Kumar TP, Guddanti T, Yan Y, Blackburn SL, McBride DW. Neurobehavioral deficits after subarachnoid hemorrhage in mice: sensitivity analysis and development of a new composite score. J Am Heart Assoc. 2019;8(8):e011699. doi:10.1161/JAHA.118.011699
  • Ren H, Han R, Chen X, et al. Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: an update. J Cereb Blood Flow Metab. 2020;40(9):1752–1768. doi:10.1177/0271678X20923551
  • Fei X, He Y, Chen J, et al. The role of toll-like receptor 4 in apoptosis of brain tissue after induction of intracerebral hemorrhage. J Neuroinflammation. 2019;16(1):1–14. doi:10.1186/s12974-019-1634-x
  • Zhang X, Wu Y, Wang D, Jin X, Li C. Expression changes of inflammatory cytokines TNF-α, IL-1β and HO-1 in hematoma surrounding brain areas after intracerebral hemorrhage. J Biol Regul Homeost Agents. 2019;33(5):1359–1367. doi:10.23812/19-150-A
  • Li W, Liu X, Tu Y, et al. Dysfunctional Nurr1 promotes high glucose-induced Müller cell activation by up-regulating the NF-κB/NLRP3 inflammasome axis. Neuropeptides. 2020;82:102057. doi:10.1016/j.npep.2020.102057
  • Ding H, Li Y, Wen M, Liu X, Han Y, Zeng H. Elevated intracranial pressure induces IL‑1β and IL‑18 overproduction via activation of the NLRP3 inflammasome in microglia of ischemic adult rats. IntJ Mol Med. 2021;47(1):183–194. doi:10.3892/ijmm.2020.4779
  • Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol. 2014;75(2):209–219. doi:10.1002/ana.24070
  • Liang Y, Song P, Chen W, et al. Inhibition of caspase-1 ameliorates ischemia-associated blood-brain barrier dysfunction and integrity by suppressing pyroptosis activation. Front Cell Neurosci. 2021;14:540669. doi:10.3389/fncel.2020.540669
  • Gu L, Sun M, Li R, et al. Activation of RKIP binding ASC attenuates neuronal pyroptosis and brain injury via Caspase-1/GSDMD Signaling pathway after intracerebral hemorrhage in mice. Transl Stroke Res. 2022:1–18. doi:10.1007/s12975-021-00927-z
  • Liu Z, Zhang R, Chen X, et al. Identification of hub genes and small-molecule compounds related to intracerebral hemorrhage with bioinformatics analysis. PeerJ. 2019;7:e7782.
  • Chen S, Zhao L, Sherchan P, et al. Activation of melanocortin receptor 4 with RO27-3225 attenuates neuroinflammation through AMPK/JNK/p38 MAPK pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 2018;15(1):1–13. doi:10.1186/s12974-018-1140-6
  • Chen Y, Dong J, Yang D, et al. Synergistic network pharmacology for traditional Chinese medicine liangxue tongyu formula in acute intracerebral hemorrhagic stroke. Neural Plast. 2021;2021:1–21. doi:10.1155/2021/8874296
  • Zhang J, Novakovic N, Hua Y, Keep RF, Xi G. Role of lipocalin-2 in extracellular peroxiredoxin 2-induced brain swelling, inflammation and neuronal death. Exp Neurol. 2021;335:113521. doi:10.1016/j.expneurol.2020.113521
  • Suk K. Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol. 2016;144:158–172. doi:10.1016/j.pneurobio.2016.08.001
  • Ranjbar Taklimie F, Gasterich N, Scheld M, et al. Hypoxia induces astrocyte-derived lipocalin-2 in ischemic stroke. Int J Mol Sci. 2019;20(6):1271. doi:10.3390/ijms20061271
  • Ni W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2015;35(9):1454–1461. doi:10.1038/jcbfm.2015.52
  • Zhao J, Xi G, Wu G, Keep RF, Hua Y. Deferoxamine Attenuated the Upregulation of Lipocalin-2 Induced by Traumatic Brain Injury in Rats. Brain Edema XVI: Springer; 2016:291–294.
  • Miao Y, Wang B, Hu J, et al. Herb formula (GCis) prevents pulmonary infection secondary to intracerebral hemorrhage by enhancing peripheral immunity and intestinal mucosal immune barrier. Front Pharmacol. 2022;13:1.
  • Ding R, Li H, Liu Y, et al. Activating cGAS–STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation. 2022;19(1):137. doi:10.1186/s12974-022-02511-0
  • Jian D, Qin L, Gan H, et al. NPAS4 exacerbates pyroptosis via transcriptionally regulating NLRP6 in the acute phase of intracerebral hemorrhage in mice. Int J Mol Sci. 2023;24(9):8320. doi:10.3390/ijms24098320
  • Dubois H, Sorgeloos F, Sarvestani ST, et al. Nlrp3 inflammasome activation and Gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLoS Pathogens. 2019;15(4):e1007709. doi:10.1371/journal.ppat.1007709
  • Song E, Jahng JW, Chong LP, et al. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge. Am J Transl Res. 2017;9(6):2723.
  • Kim SL, Shin MW, Kim SW. Lipocalin 2 activates the NLRP3 inflammasome via LPS‑induced NF-κB signaling and plays a role as a pro‑inflammatory regulator in murine macrophages. Mol Med Rep. 2022;26(6):1–10. doi:10.3892/mmr.2022.12875
  • Su X, Zhou P, Qi Y. Down-regulation of LCN2 attenuates retinal vascular dysfunction and caspase-1-mediated pyroptosis in diabetes mellitus. Ann Translat Med. 2022;10(12):695. doi:10.21037/atm-22-2655
  • Li J, Xu P, Hong Y, et al. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury. J Neuroinflammation. 2023;20(1):148. doi:10.1186/s12974-023-02819-5
  • Gu L, Sun M, Li R, et al. Didymin suppresses microglia pyroptosis and neuroinflammation through the Asc/Caspase-1/GSDMD pathway following experimental intracerebral hemorrhage. Front Immunol. 2022;13:810582. doi:10.3389/fimmu.2022.810582