194
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Thermodynamics and kinetic analysis of carbon nanofibers as nanozymes

, , , &
Pages 3-10 | Published online: 16 Jul 2019

References

  • Wang X, Guo W, Hu Y, Wu J, Wei H. Nanozymes: Next Wave of Artificial Enzyme. 1st ed. New York: Springer; 2016:100–160.
  • Shin HY, Jung PT, Kim MR. Recent research trends and future prospects in nanozymes. J Nanomater. 2015;2015:756278.
  • Hui W, Erkang W. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzyme. Chem Soc Rev. 2013;14:1–10.
  • Feng L, Xie N, Zhong J. Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials. 2014;7:3919–3945. doi:10.3390/ma705391928788657
  • Yan Z, Zhao FM, Yuting ZZ, et al. Low-cost nano carbon-based peroxidases from graphite and carbon fibers. Appl Sci. 2017;7:924. doi:10.3390/app7090924
  • Zhang P, Sun D, Cho A, et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun. 2019;10:940.30808912
  • Hatakeyama R, Shimizu A. Thermal quantum machine. eprintarXiv. 2019;1904:06081.
  • Xu B, Wang H, Wang W, et al. A single-atom nanozyme for wound disinfection applications. Angew Chem Int Ed Engl. 2019;58:4911–4916. doi:10.1002/anie.20181399430697885
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48:1004–1076. doi:10.1039/c8cs00457a30534770
  • Klančnik G, Medved J, Mrvar P. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation, RMZ. Mat Geo Env. 2010;57(1):127–142.
  • Boettinger W, Kattner J, Moon UR. DTA and heat-flux DSC measurements of alloy melting and freezing; metallurgy division, material science and engineering laboratory 1st ed. Washington DC: National Institute of Standards and Technology; 2006.
  • Skoog DA, Holler FJ, Crouch SR. Principles of Instrumental Analysis 6th ed. Belmont: Thomson Brooks/Cole; 2007.
  • Young V. Instrumental methods of analysis. J Chem Edu. 1989;66(1):40–46.
  • Pijpers MFJ, Mathot VBF. Optimization of instrument response and resolution of standard and high-speed power compensation DSC. Jtac. 2008;93:319–327.
  • Brown ME. Hand book of Thermal Analysis and Calorimetry: Principles and Practice. 1st ed. Atlanta: Elsevier; 1998.
  • Guo Y, Li J, Dong S. Hemin functionalized graphene nano sheets-based dual biosensor platforms for hydrogen peroxide and glucose. Sens Actuators B Chem. 2001;160:295–300. doi:10.1016/j.snb.2011.07.050
  • Bhaskar G, Tanuja B. Carbon nanodots as peroxidase nanozymes for biosensing. Molecules. 2016;21(12):1–17.
  • Mahajan A, Kingon A, Kukovecz Á, Konya ZM, Vilarinho P. Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mat Lett. 2013;90:165–168. doi:10.1016/j.matlet.2012.08.120
  • Bahreini M, Movahedi M, Peyvandi M, Nematollahi F, Sepasi Tehrani H. Correlation assessment of zeta potential and catalytic activity of graphene nano sheets as nanozyme. Eurasian J Anal Chem. 2018;13(5):47. doi:10.29333/ejac/94451
  • Liu S, Tian J, Wang L, Luo Y, Sun X. A general strategy for the production of photo luminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv. 2012;2:411–413. doi:10.1039/C1RA00709B
  • Garg B, Bisht T, Ling Y-C. Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: an overview. Molecules. 2015;20:14155–14190. doi:10.3390/molecules20081415526248071
  • Wang X, Qu K, Xu B, Ren J, Qu X. Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res. 2011;4(9):908–920. doi:10.1007/s12274-011-0147-4