241
Views
24
CrossRef citations to date
0
Altmetric
Review

Static DNA Nanostructures For Cancer Theranostics: Recent Progress In Design And Applications

, , ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 25-46 | Published online: 15 Oct 2019

References

  • Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol. 2017;233(4):2982–2992. doi:10.1002/jcp.2605128608554
  • Seidi K, Neubauer HA, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: implications for nano drug delivery systems. J Control Release. 2018;275:142–161. doi:10.1016/j.jconrel.2018.02.02029454742
  • Jahanban-Esfahlan A, Ostadrahimi A, Jahanban-Esfahlan R, Roufegarinejad L, Tabibiazar M, Amarowicz R. Recent developments in the detection of bovine serum albumin. Int J Biol Macromol. 2019;138:602–617. doi:10.1016/j.ijbiomac.2019.07.09631319084
  • Dianat-Moghadam H, Heydarifard M, Jahanban-Esfahlan R, et al. Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release. 2018;288:62–83. doi:10.1016/j.jconrel.2018.08.04330184466
  • Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2017;233(3):2019–2031. doi:10.1002/jcp.2585928198007
  • Seeman NC. DNA in a material world. Nature. 2003;421:427. doi:10.1038/nature0140612540916
  • Goodman RP, Berry RM, Turberfield AJ. The single-step synthesis of a DNA tetrahedron. Chem Commun (Camb). 2004;12:1372–1373. doi:10.1039/b402293a
  • Herrera VLM, Colby AH, Ruiz-Opazo N, Coleman DG, Grinstaff MW. Nucleic acid nanomedicines in Phase II/III clinical trials: translation of nucleic acid therapies for reprogramming cells. Nanomedicine. 2018;13(16):2083–2098. doi:10.2217/nnm-2018-012230204054
  • Bhatia D, Surana S, Chakraborty S, Koushika SP, Krishnan Y. A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nat Commun. 2011;2:339. doi:10.1038/ncomms133721654639
  • Hu R, Zhang X, Zhao Z, et al. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Ed Engl. 2014;53(23):5821–5826. doi:10.1002/anie.20140032324753303
  • Jiang D, Ge Z, Im H-J, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng. 2018;2(11):865–877. doi:10.1038/s41551-018-0317-830505626
  • Wang M. DNA origami scavenges ROS in the kidney. Nature Reviews Nephrology 2019;15(61).
  • Zhang L, Jean SR, Ahmed S, et al. Multifunctional quantum dot DNA hydrogels. Nat Commun. 2017;8(1):381. doi:10.1038/s41467-017-00298-w28851869
  • Jiang D, Sun Y, Li J, et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl Mater Interfaces. 2016;8(7):4378–4384. doi:10.1021/acsami.5b1079226878704
  • Li L, Niu C, Li T, et al. Ultrasensitive electrochemiluminescence biosensor for detection of laminin based on DNA dendrimer-carried luminophore and DNA nanomachine-mediated target recycling amplification. Biosens Bioelectron. 2018;101:206–212. doi:10.1016/j.bios.2017.10.00929096357
  • Wang K, You M, Chen Y, et al. Self-assembly of a bifunctional DNA carrier for drug delivery. Angew Chem Int Ed Engl. 2011;50(27):6098–6101. doi:10.1002/anie.20100805321594957
  • Shieh YA, Yang SJ, Wei MF, Shieh MJ. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano. 2010;4(3):1433–1442. doi:10.1021/nn901374b20166743
  • Liu T, Wang C, Gu X, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater. 2014;26(21):3433–3440. doi:10.1002/adma.20130525624677423
  • Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc. 2012;134(32):13396–13403. doi:10.1021/ja304263n22803823
  • Zhang C, Li X, Tian C, et al. DNA nanocages swallow gold nanoparticles (AuNPs) to form AuNP@DNA cage core-shell structures. ACS Nano. 2014;8(2):1130–1135. doi:10.1021/nn406039p24410162
  • Zhao YX, Shaw A, Zeng X, Benson E, Nystrom AM, Hogberg B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano. 2012;6(10):8684–8691. doi:10.1021/nn302266222950811
  • Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J Am Chem Soc. 2014;136(42):14722–14725. doi:10.1021/ja508802425336272
  • Kumar V, Bayda S, Hadla M, et al. Enhanced chemotherapeutic behavior of open-caged DNA@doxorubicin nanostructures for cancer cells. J Cell Physiol. 2016;231(1):106–110. doi:10.1002/jcp.2505726031628
  • Song J, Im K, Hwang S, et al. DNA hydrogel delivery vehicle for light-triggered and synergistic cancer therapy. Nanoscale. 2015;7(21):9433–9437. doi:10.1039/c5nr00858a25959856
  • Song J, Hwang S, Im K, et al. Light-responsible DNA hydrogel–gold nanoparticle assembly for synergistic cancer therapy. J Mater Chem B. 2015;3(8):1537–1543. doi:10.1039/C4TB01519C
  • Huang F, Liao WC, Sohn YS, Nechushtai R, Lu CH, Willner I. Light-responsive and pH-responsive DNA microcapsules for controlled release of loads. J Am Chem Soc. 2016;138(28):8936–8945. doi:10.1021/jacs.6b0477327309888
  • Yi Q, Ma J, Kang K, Gu Z. Bioreducible nanocapsules for folic acid-assisted targeting and effective tumor-specific chemotherapy. Int J Nanomedicine. 2018;13:653–667. doi:10.2147/IJN.S14945829440892
  • Taghdisi SM, Danesh NM, Ramezani M, et al. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm. 2016;102:152–158. doi:10.1016/j.ejpb.2016.03.01326987703
  • Wang YM, Wu Z, Liu SJ, Chu X. Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics. Anal Chem. 2015;87(13):6470–6474. doi:10.1021/acs.analchem.5b0163426044187
  • Halley PD, Lucas CR, McWilliams EM, et al. Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small. 2016;12(3):308–320. doi:10.1002/smll.20150211826583570
  • Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of escherichia coli and staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6(24):21822–21831. doi:10.1021/am502591c24941440
  • Ren J, Hu Y, Lu CH, et al. pH-responsive and switchable triplex-based DNA hydrogels. Chem Sci. 2015;6(7):4190–4195. doi:10.1039/c5sc00594a29218185
  • Schüller VJ, Heidegger S, Sandholzer N, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano. 2011;5(12):9696–9702. doi:10.1021/nn203161y22092186
  • Qu Y, Yang J, Zhan P, et al. Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs. ACS Appl Mater Interfaces. 2017;9(24):20324–20329. doi:10.1021/acsami.7b0589028570804
  • Li J, Pei H, Zhu B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano. 2011;5(11):8783–8789. doi:10.1021/nn202774x21988181
  • Zhang L, Zhu G, Mei L, et al. Self-assembled DNA immunonanoflowers as multivalent CpG nanoagents. ACS Appl Mater Interfaces. 2015;7(43):24069–24074. doi:10.1021/acsami.5b0698726440045
  • Chen N, Wei M, Sun Y, et al. Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity. Small. 2014;10(2):368–375. doi:10.1002/smll.20130090323963797
  • Wang C, Sun W, Wright G, Wang AZ, Gu Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater. 2016;28(40):8912–8920. doi:10.1002/adma.20150631227558441
  • Sellner S, Kocabey S, Nekolla K, Krombach F, Liedl T, Rehberg M. DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials. 2015;53:453–463. doi:10.1016/j.biomaterials.2015.02.09925890742
  • Ohtsuki S, Matsuzaki N, Mohri K, et al. Optimal arrangement of four short DNA strands for delivery of immunostimulatory nucleic acids to immune cells. Nucleic Acid Ther. 2015;25(5):245–253. doi:10.1089/nat.2014.052426222130
  • Nishikawa M, Mizuno Y, Mohri K, et al. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials. 2011;32(2):488–494. doi:10.1016/j.biomaterials.2010.09.01320932569
  • Zhang Y, Ma W, Zhu Y, et al. Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 2018;18:5652–5659.30088771
  • Readman JB, Dickson G, Coldham NG. Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant escherichia coli. Nucleic Acid Ther. 2017;27(3):176–181. doi:10.1089/nat.2016.064428080251
  • Qian H, Tay CY, Setyawati MI, Chia SL, Lee DS, Leong DT. Protecting microRNAs from RNase degradation with steric DNA nanostructures. Chem Sci. 2017;8(2):1062–1067. doi:10.1039/c6sc01829g28451245
  • Liu Q, Wang D, Yuan M, et al. Capturing intracellular oncogenic microRNAs with self-assembled DNA nanostructures for microRNA-based cancer therapy. Chem Sci. 2018;9(38):7562–7568. doi:10.1039/c8sc03039a30319757
  • Nahar S, Nayak AK, Ghosh A, Subudhi U, Maiti S. Enhanced and synergistic downregulation of oncogenic miRNAs by self-assembled branched DNA. Nanoscale. 2017;10(1):195–202. doi:10.1039/c7nr06601e29210414
  • Shin SW, Lee BS, Yang K, et al. Fluorescence-coded DNA nanostructure probe system to enable discrimination of tumor heterogeneity via a screening of dual intracellular microRNA signatures in situ. Sci Rep. 2017;7(1):13499. doi:10.1038/s41598-017-13456-329044199
  • Chen G, Liu D, He C, Gannett TR, Lin W, Weizmann Y. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. J Am Chem Soc. 2015;137(11):3844–3851. doi:10.1021/ja512665z25622178
  • Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012;7(6):389–393. doi:10.1038/nnano.2012.7322659608
  • Bujold KE, Hsu JCC, Sleiman HF, Optimized DNA. “Nanosuitcases” for encapsulation and conditional release of siRNA. J Am Chem Soc. 2016;138(42):14030–14038. doi:10.1021/jacs.6b0836927700075
  • Esteban-Fernández de Ávila B, Angell C, Soto F, et al. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 2016;10(5):4997–5005. doi:10.1021/acsnano.6b0141527022755
  • Hong CA, Eltoukhy AA, Lee H, Langer R, Anderson DG, Nam YS. Dendrimeric siRNA for efficient gene silencing. Angew Chem Int Ed Engl. 2015;54(23):6740–6744. doi:10.1002/anie.20141249325892329
  • Dunn SS, Tian S, Blake S, et al. Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J Am Chem Soc. 2012;134(17):7423–7430. doi:10.1021/ja300174v22475061
  • Li J, Zheng C, Cansiz S, et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J Am Chem Soc. 2015;137(4):1412–1415. doi:10.1021/ja512293f25581100
  • Fakhoury JJ, McLaughlin CK, Edwardson TW, Conway JW, Sleiman HF. Development and characterization of gene silencing DNA cages. Biomacromolecules. 2014;15(1):276–282. doi:10.1021/bm401532n24328173
  • Sun W, Ji W, Hall JM, et al. Efficient delivery of CRISPR-Cas9 for genome editing via self-assembled DNA nanoclews. Angew Chem Int Ed Engl. 2015;54(41):12029–12033. doi:10.1002/anie.20150603026310292
  • Charoenphol P, Bermudez H. Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharm. 2014;11(5):1721–1725. doi:10.1021/mp500047b24739136
  • Chang M, Yang C-S, Huang D-M. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano. 2011;5(8):6156–6163. doi:10.1021/nn200693a21732610
  • Walsh AS, Yin H, Erben CM, Wood MJ, Turberfield AJ. DNA cage delivery to mammalian cells. ACS Nano. 2011;5(7):5427–5432. doi:10.1021/nn200557421696187
  • Meng HM, Zhang X, Lv Y, et al. DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano. 2014;8(6):6171–6181. doi:10.1021/nn501596224806614
  • Song P, Ye D, Zuo X, et al. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett. 2017;17(9):5193–5198. doi:10.1021/acs.nanolett.7b0100628771008
  • Ma Y, Mao Y, An Y, et al. Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst. 2018;143(7):1679–1684. doi:10.1039/c8an00010g29512663
  • Ji Y, Zhang L, Zhu L, Lei J, Wu J, Ju H. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein. Biosens Bioelectron. 2017;96:201–205. doi:10.1016/j.bios.2017.05.00828499196
  • Li F, Cha TG, Pan J, Ozcelikkale A, Han B, Choi JH. DNA walker-regulated cancer cell growth inhibition. Chembiochem. 2016;17(12):1138–1141. doi:10.1002/cbic.20160005227059426
  • Wang S, Ji Y, Fu H, Ju H, Lei J. A rolling circle amplification-assisted DNA walker triggered by multiple DNAzyme cores for highly sensitive electrochemical biosensing. Analyst. 2019;144:691–697. doi:10.1039/c8an01892h30516182
  • Wang K, He M-Q, Zhai F-H, Wang J, He R-H, Yu Y-L. Autonomous DNA nanomachine based on cascade amplification of strand displacement and DNA walker for detection of multiple DNAs. Biosens Bioelectron. 2018;105:159–165. doi:10.1016/j.bios.2018.01.04429412940
  • Gacanin J, Kovtun A, Fischer S, et al. Spatiotemporally controlled release of rho-inhibiting C3 toxin from a protein-DNA hybrid hydrogel for targeted inhibition of osteoclast formation and activity. Adv Healthc Mater. 2017;6(21). doi:10.1002/adhm.201700392.
  • Zhu G, Mei L, Vishwasrao HD, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat Commun. 2017;8(1):1482. doi:10.1038/s41467-017-01386-729133898
  • Zheng J, Li N, Li C, et al. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification. Biosens Bioelectron. 2018;107:40–46. doi:10.1016/j.bios.2018.01.05429427885
  • Feng Q, Zhao X, Guo Y, Liu M, Wang P. Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons. Biosens Bioelectron. 2018;108:97–102. doi:10.1016/j.bios.2018.02.05029522905
  • Zhang H, Chao J, Pan D, et al. DNA origami-based shape IDs for single-molecule nanomechanical genotyping. Nat Commun. 2017;8:14738. doi:10.1038/ncomms1473828382928
  • Liu K, Pan D, Wen Y, et al. Identifying the genotypes of hepatitis B virus (HBV) with DNA origami label. Small. 2018;14:6.
  • Na W, Nam D, Lee H, Shin S. Rapid molecular diagnosis of infectious viruses in microfluidics using DNA hydrogel formation. Biosens Bioelectron. 2018;108:9–13. doi:10.1016/j.bios.2018.02.04029494886
  • Prusty DK, Adam V, Zadegan RM, Irsen S, Famulok M. Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nat Commun. 2018;9(1):535. doi:10.1038/s41467-018-02929-229416033
  • Song J, Lee M, Kim T, et al. A RNA producing DNA hydrogel as a platform for a high performance RNA interference system. Nat Commun. 2018;9(1):4331. doi:10.1038/s41467-018-06864-030337586
  • Peng H, Li XF. A microRNA-initiated DNAzyme motor operating in living cells. Nat Commun. 2017;8:14378. doi:10.1038/ncomms1437828262725
  • Hwang MT, Wang Z, Ping J, et al. DNA nanotweezers and graphene transistor enable label-free genotyping. Adv Mater. 2018;30:e1802440. doi:10.1002/adma.v30.34
  • Bath J, Green SJ, Turberfield AJ. A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed Engl. 2005;44(28):4358–4361. doi:10.1002/anie.20050126215959864
  • Xu X, Wang L, Li K, Huang Q, Jiang W. A smart DNA tweezer for detection of human telomerase activity. Anal Chem. 2018;90(5):3521–3530. doi:10.1021/acs.analchem.7b0537329446916
  • Lilienthal S, Shpilt Z, Wang F, Orbach R, Willner I. Programmed DNAzyme-triggered dissolution of DNA-based hydrogels: means for controlled release of biocatalysts and for the activation of enzyme cascades. ACS Appl Mater Interfaces. 2015;7(16):8923–8931. doi:10.1021/acsami.5b0215625826003
  • Yata T, Takahashi Y, Tan M, et al. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials. 2017;146:136–145. doi:10.1016/j.biomaterials.2017.09.01428918263
  • Elbaz J, Wang Z-G, Orbach R, Willner I. pH-stimulated concurrent mechanical activation of two DNA “Tweezers”. A “SET−RESET” logic gate system. Nano Lett. 2009;9(12):4510–4514. doi:10.1021/nl902859m19835388
  • Crawford R, Erben CM, Periz J, et al. Non-covalent single transcription factor encapsulation inside a DNA cage. Angew Chem Int Ed Engl. 2013;52(8):2284–2288. doi:10.1002/anie.20120791423325751
  • Porchetta A, Ippodrino R, Marini B, Caruso A, Caccuri F, Ricci F. Programmable nucleic acid nanoswitches for the rapid, single-step detection of antibodies in bodily fluids. J Am Chem Soc. 2018;140(3):947–953. doi:10.1021/jacs.7b0934729313682
  • Burns JR, Lamarre B, Pyne ALB, Noble JE, Ryadnov MG. DNA origami inside-out viruses. ACS Synth Biol. 2018;7(3):767–773. doi:10.1021/acssynbio.7b0027829415542
  • Stephanopoulos N, Freeman R, North HA, et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 2015;15(1):603–609. doi:10.1021/nl504079q25546084
  • Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science. 2012;335(6070):831–834. doi:10.1126/science.121408122344439
  • Wang Y, Jiang L-P, Zhou S, Bi S, Zhu -J-J. DNA polymerase-directed hairpin assembly for targeted drug delivery and amplified biosensing. ACS Appl Mater Interfaces. 2016;8(40):26532–26540. doi:10.1021/acsami.6b0859727690212
  • Zhao Z, Fu J, Dhakal S, et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat Commun. 2016;7:10619. doi:10.1038/ncomms1061926861509
  • Ora A, Järvihaavisto E, Zhang H, et al. Cellular delivery of enzyme-loaded DNA origami. Chem Commun. 2016;52(98):14161–14164. doi:10.1039/c6cc08197e
  • Liu M, Fu J, Hejesen C, et al. A DNA tweezer-actuated enzyme nanoreactor. Nat Commun. 2013;4:2127. doi:10.1038/ncomms312723820332
  • Hur J, Im K, Kim SW, et al. DNA hydrogel templated carbon nanotube and polyaniline assembly and its applications for electrochemical energy storage devices. J Mater Chem A. 2013;1(46):14460–14466. doi:10.1039/c3ta13382f
  • Zhang Z-M, Gao P-C, Wang Z-F, Sun B-W, Jiang Y. DNA-caged gold nanoparticles for controlled release of doxorubicin triggered by a DNA enzyme and pH. Chem Commun. 2015;51(65):12996–12999. doi:10.1039/c5cc05164a
  • Zhu D, Liu W, Cao W, et al. Multiple amplified electrochemical detection of microRNA-21 using hierarchical flower-like gold nanostructures combined with gold-enriched hybridization chain reaction. Electroanalysis. 2018;30(7):1349–1356. doi:10.1002/elan.201700696
  • Dong S, Zhao R, Zhu J, et al. Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Appl Mater Interfaces. 2015;7(16):8834–8842. doi:10.1021/acsami.5b0143825844798
  • Arnon S, Dahan N, Koren A, et al. Thought-controlled nanoscale robots in a living host. PLoS One. 2016;11(8):e0161227. doi:10.1371/journal.pone.016122727525806
  • Geng J, Yao C, Kou X, Tang J, Luo D, Yang D. A fluorescent biofunctional DNA hydrogel prepared by enzymatic polymerization. Adv Healthc Mater. 2018;7(5):1700998. doi:10.1002/adhm.v7.5
  • Li J, Yu J, Huang Y, Zhao H, Tian L. Highly stable and multiemissive silver nanoclusters synthesized in situ in a DNA hydrogel and their application for hydroxyl radical sensing. ACS Appl Mater Interfaces. 2018;10(31):26075–26083. doi:10.1021/acsami.8b0915230001115
  • Udomprasert A, Kangsamaksin T. DNA origami applications in cancer therapy. Cancer Sci. 2017;108(8):1535–1543. doi:10.1111/cas.1329028574639
  • Perrault SD, Shih WM. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano. 2014;8(5):5132–5140. doi:10.1021/nn501191424694301
  • Mei Q, Wei X, Su F, et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 2011;11(4):1477–1482. doi:10.1021/nl104083621366226
  • Meng M, Schmidtgall B, Ducho C. Enhanced stability of DNA oligonucleotides with partially zwitterionic backbone structures in biological media. Molecules. 2018;23(11):2941. doi:10.3390/molecules23112941
  • Zhuang X, Ma X, Xue X, et al. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy. ACS Nano. 2016;10(3):3486–3495. doi:10.1021/acsnano.5b0767126950644
  • Schmidtgall B, Kuepper A, Meng M, Grossmann TN, Ducho C. Oligonucleotides with cationic backbone and their hybridization with DNA: interplay of base pairing and electrostatic attraction. Chemistry.2018;24(7):1544–1553. doi:10.1002/chem.20170433829048135
  • Zadegan RM, Jepsen MDE, Hildebrandt LL, Birkedal V, Kjems J. Construction of a fuzzy and boolean logic gates based on DNA. Small. 2015;11(15):1811–1817. doi:10.1002/smll.20140275525565140
  • Green CM, Schutt K, Morris N, et al. Metrology of DNA arrays by super-resolution microscopy. Nanoscale. 2017;9(29):10205–10211. doi:10.1039/c7nr00928c28489095
  • Zadegan RM, Lindau EG, Klein WP, et al. Twisting of DNA Origami from Intercalators. Sci Rep. 2017;7(1):7382. doi:10.1038/s41598-017-07796-328785065
  • Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano. 2014;8(7):6633–6643. doi:10.1021/nn502058j24963790
  • Tinnefeld P, Acuna GP, Wei Q, et al. DNA origami nanotools for single-molecule biosensing and superresolution microscopy. Paper presented at: Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA,BRAIN,NTM,OMA,OMP); 4 15, 2019; Tucson, Arizona.
  • Shaw A, Hoffecker IT, Smyrlaki I, et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat Nanotechnol. 2019;14(2):184–190. doi:10.1038/s41565-018-0336-330643273
  • Hawkes W, Huang D, Reynolds P, et al. Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control. Faraday Discuss. 2019. doi:10.1039/C9FD00023B
  • Huang D, Patel K, Perez-Garrido S, Marshall JF, Palma M. DNA origami nanoarrays for multivalent investigations of cancer cell spreading with nanoscale spatial resolution and single-molecule control. ACS Nano. 2019;13(1):728–736. doi:10.1021/acsnano.8b0801030588806
  • Lu X, Liu J, Wu X, Ding B. Multifunctional DNA origami nanoplatforms for drug delivery. Chem Asian J. 2019;14(13):2193–2202. doi:10.1002/asia.20190057431125182
  • Goodman RP, Schaap IA, Tardin CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science. 2005;310(5754):1661–1665. doi:10.1126/science.112036716339440
  • Karimi M, Zangabad PS, Mehdizadeh F, et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale. 2017;9(4):1356–1392. doi:10.1039/c6nr07315h28067384
  • Erben CM, Goodman RP, Turberfield AJ. Single-molecule protein encapsulation in a rigid DNA cage. Angew Chem Int Ed Engl. 2006;45(44):7414–7417. doi:10.1002/anie.20060339217086586
  • Brodin JD, Sprangers AJ, McMillan JR, Mirkin CA. DNA-mediated cellular delivery of functional enzymes. J Am Chem Soc. 2015;137(47):14838–14841. doi:10.1021/jacs.5b0971126587747
  • Kim KR, Kim DR, Lee T, et al. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun (Camb). 2013;49(20):2010–2012. doi:10.1039/c3cc38693g23380739
  • Vindigni G, Raniolo S, Ottaviani A, et al. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano. 2016;10(6):5971–5979. doi:10.1021/acsnano.6b0140227214742
  • Raniolo S, Vindigni G, Ottaviani A, et al. Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages. Nanomedicine. 2018;14:1181–1190. doi:10.1016/j.nano.2018.02.00229458213
  • Kim KR, Kim HY, Lee YD, et al. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Release. 2016;243:121–131. doi:10.1016/j.jconrel.2016.10.01527746274
  • Xia Z, Wang P, Liu X, et al. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochemistry. 2016;55(9):1326–1331. doi:10.1021/acs.biochem.5b0118126789283
  • Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol. 2008;3(2):93–96. doi:10.1038/nnano.2008.318654468
  • Lee H, Lytton-Jean AKR, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012;7:389. doi:10.1038/nnano.2012.7322659608
  • Vellampatti S, Heo R, Mitta Sekhar B, Park Jae H, Park Sung H. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules. Nanotechnology. 2018;29(9):095602. doi:10.1088/1361-6528/aaa3cb29271356
  • Pei H, Lu N, Wen Y, et al. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater. 2010;22(42):4754–4758. doi:10.1002/adma.20100276720839255
  • Fu Y, Zeng D, Chao J, et al. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J Am Chem Soc. 2013;135(2):696–702. doi:10.1021/ja307669223237536
  • Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 2006;6(7):1502–1504. doi:10.1021/nl060994c16834438
  • Lin C, Ke Y, Liu Y, Mertig M, Gu J, Yan H. Functional DNA nanotube arrays: bottom-up meets top-down. Angew Chem Int Ed Engl. 2007;46(32):6089–6092. doi:10.1002/anie.20070176717628475
  • Sacca B, Meyer R, Erkelenz M, et al. Orthogonal protein decoration of DNA origami. Angew Chem Int Ed Engl. 2010;49(49):9378–9383. doi:10.1002/anie.20100593121031395
  • Nakata E, Liew FF, Uwatoko C, et al. Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. Angew Chem Int Ed Engl. 2012;51(10):2421–2424. doi:10.1002/anie.20110819922287266
  • Pinto YY, Le JD, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 2005;5(12):2399–2402. doi:10.1021/nl051549516351185
  • Kuzuya A, Kimura M, Numajiri K, et al. Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly. Chembiochem. 2009;10(11):1811–1815. doi:10.1002/cbic.20090022919562789
  • Baker YR, Chen J, Brown J, et al. Preparation and characterization of manganese, cobalt and zinc DNA nanoflowers with tuneable morphology, DNA content and size. Nucleic Acids Res. 2018;46(15):7495–7505. doi:10.1093/nar/gky63030010979
  • Shi L, Mu C, Gao T, et al. DNA nanoflower blooms in nanochannels: a new strategy for miRNA detection. Chem Commun. 2018;54(81):11391–11394. doi:10.1039/c8cc05690k
  • Lv Y, Hu R, Zhu G, et al. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nat Protoc. 2015;10(10):1508–1524. doi:10.1038/nprot.2015.07826357007
  • Mei L, Zhu G, Qiu L, et al. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 2015;8(11):3447–3460.27774139
  • Altinkaynak C, Tavlasoglu S, Ozdemir N, Ocsoy I. A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol. 2016;93–94:105–112. doi:10.1016/j.enzmictec.2016.06.011
  • Ge J, Lei J, Zare RN. Protein-inorganic hybrid nanoflowers. Nat Nanotechnol. 2012;7(7):428–432. doi:10.1038/nnano.2012.8022659609
  • Zhao Y, Hu S, Wang H, et al. DNA dendrimer–streptavidin nanocomplex: an efficient signal amplifier for construction of biosensing platforms. Anal Chem. 2017;89(12):6907–6914. doi:10.1021/acs.analchem.7b0155128514850
  • Lv Y, Peng R, Zhou Y, Zhang X, Tan W. Catalytic self-assembly of a DNA dendritic complex for efficient gene silencing. Chem Commun (Camb). 2016;52(7):1413–1415. doi:10.1039/c5cc06937h26626818
  • Mohri K, Kusuki E, Ohtsuki S, et al. Self-assembling DNA dendrimer for effective delivery of immunostimulatory CpG DNA to immune cells. Biomacromolecules. 2015;16(4):1095–1101. doi:10.1021/bm501731f25775113
  • Liu H, Cao T, Xu Y, Dong Y, Liu D. Tuning the mechanical properties of a DNA hydrogel in three phases based on ATP aptamer. Int J Mol Sci. 2018;19(6):1633.
  • Shimomura S, Nishimura T, Ogura Y, Tanida J. Photothermal fabrication of microscale patterned DNA hydrogels. R Soc Open Sci. 2018;5(2):171779. doi:10.1098/rsos.17248329515885
  • Radvar E, Azevedo HS. Supramolecular peptide/polymer hybrid hydrogels for biomedical applications. Macromol Biosci. 2018;19:e1800221.30101512
  • Kang H, Liu H, Zhang X, et al. Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir. 2011;27(1):399–408. doi:10.1021/la103755321126095
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569–579.12047857
  • Zhu Z, Wu C, Liu H, et al. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem Int Ed Engl. 2010;49(6):1052–1056. doi:10.1002/anie.20090557020084650
  • Wang Y, Shao Y, Ma X, et al. Constructing tissuelike complex structures using cell-laden DNA hydrogel bricks. ACS Appl Mater Interfaces. 2017;9(14):12311–12315. doi:10.1021/acsami.7b0160428300395
  • Finke A, Bußkamp H, Manea M, Marx A. Designer extracellular matrix based on DNA–peptide networks generated by polymerase chain reaction. Angew Chem Int Ed Engl. 2016;55(34):10136–10140. doi:10.1002/anie.20160468727410200
  • Zinchenko A, Che Y, Taniguchi S, Lopatina L, Sergeyev V, Murata S. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles. J Nanopart Res. 2016;18(7):179. doi:10.1007/s11051-016-3480-4
  • Youngblood RL, Truong NF, Segura T, Shea LD. It’s all in the delivery: designing hydrogels for cell and non-viral gene therapies. Mol Ther. 2018;26(9):2087–2106. doi:10.1016/j.ymthe.2018.07.02230107997
  • Shahbazi M-A, Bauleth-Ramos T, Santos HA. Hydrogel Assemblies: DNA Bridging synthesis principles to biomedical applications. 2018;1(4):1800042.
  • Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D. Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance. Small. 2018;14(16):e1800185. doi:10.1002/smll.v14.1629575604
  • Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater. 2006;5(10):797–801. doi:10.1038/nmat174116998469
  • Park N, Um S H, Funabashi H, Xu J, Luo D. A Cell-free Protein-producing Gel. Vol. 82009.
  • Park N, Um SH, Funabashi H, Xu J, Luo D. A cell-free protein-producing gel. Nat Mater. 2009;8(5):432–437. doi:10.1038/nmat241919329993
  • Wu C, Han D, Chen T, et al. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc. 2013;135(49):18644–18650. doi:10.1021/ja409461724245521
  • Yuan Q, Zhang Y, Chen T, et al. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano. 2012;6(7):6337–6344. doi:10.1021/nn301836522670595
  • Pan YJ, Chen YY, Wang DR, et al. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials. 2012;33(27):6570–6579. doi:10.1016/j.biomaterials.2012.05.06222704845
  • Kang H, Trondoli AC, Zhu G, et al. Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS Nano. 2011;5(6):5094–5099. doi:10.1021/nn201171r21542633
  • El-Hamed F, Dave N, Liu J. Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology. 2011;22(49):494011. doi:10.1088/0957-4484/22/49/49401122101647
  • Mo R, Jiang T, Sun W, Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials. 2015;50:67–74. doi:10.1016/j.biomaterials.2015.01.05325736497
  • Ju C, Mo R, Xue J, et al. Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew Chem Int Ed Engl. 2014;53(24):6253–6258. doi:10.1002/anie.201311227
  • Manuguerra I, Grossi G, Thomsen RP, et al. Construction of a polyhedral DNA 12-arm junction for self-assembly of wireframe DNA lattices. ACS Nano. 2017;11(9):9041–9047. doi:10.1021/acsnano.7b0353828806061
  • Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297. doi:10.1038/nature0458616541064
  • Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332(6027):342–346. doi:10.1126/science.120299821493857
  • Zhang F, Jiang S, Wu S, et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat Nanotechnol. 2015;10:779. doi:10.1038/nnano.2015.16226192207
  • Dietz H, Douglas SM, Shih WM. Folding DNA into twisted and curved nanoscale shapes. Science. 2009;325(5941):725–730. doi:10.1126/science.117425119661424