769
Views
23
CrossRef citations to date
0
Altmetric
Review

Nanoparticle Drug Delivery Systems for α-Mangostin

ORCID Icon, , , , & ORCID Icon
Pages 23-36 | Published online: 01 Apr 2020

References

  • Chen L, Yang L, Wang C. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol. 2008;46:688–693. doi:10.1016/j.fct.2007.09.09618029076
  • Jung H-A, Su B-N, Keller WJ, Mehta RG, Kinghorn AD. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem. 2006;54(6):2077–2082. doi:10.1021/jf052649z16536578
  • Ma Y, Yu W, Shrivastava A, Srivastava RK, Shankar S. Inhibition of pancreatic cancer stem cell characteristics by α-Mangostin: molecular mechanisms involving Sonic hedgehog and Nanog. J Cell Mol Med. 2019. doi:10.1111/jcmm.14178
  • Sivaranjani M, Leskinen K, Aravindraja C, et al. Deciphering the antibacterial mode of action of alpha-mangostin on Staphylococcus epidermidis RP62A through an integrated transcriptomic and proteomic approach. Front Microbiol. 2019;10:150. doi:10.3389/fmicb.2019.0015030787919
  • Limwikrant W, Aung T, Chooluck K, Puttipipatkhachorn S, Yamamoto K. Size reduction efficiency of Alpha-Mangostin suspension using high-pressure homogenization. Chem Pharm Bull. 2019;67(4):c18–00589.
  • Kritsanawong S, Innajak S, Imoto M, Watanapokasin R. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int J Oncol. 2016;48(5):2155–2165. doi:10.3892/ijo.2016.339926892433
  • Krajarng A, Nakamura Y, Suksamrarn S, Watanapokasin R. α-Mangostin induces apoptosis in human chondrosarcoma cells through downregulation of ERK/JNK and Akt signaling pathway. J Agric Food Chem. 2011;59(10):5746–5754. doi:10.1021/jf200620n21446759
  • Chen CM, Hsieh SC, Lin CL, Lin YS, Tsai JP, Hsieh YH. Alpha-Mangostin suppresses the metastasis of human renal carcinoma cells by targeting MEK/ERK expression and MMP-9 transcription activity. Cell Physiol Biochem. 2017;44(4):1460–1470. doi:10.1159/00048558229190630
  • Lee C, Ying T, Chiou H, Hsieh S. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells. Oncotarget. 2017;8(29):47425–47439. doi:10.18632/oncotarget.1765928537893
  • Lee HN, Jang HY, Kim HJ, et al. Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.) in YD-15 tongue mucoepidermoid carcinoma cells. Int J Mol Med. 2016;37(4):939–948. doi:10.3892/ijmm.2016.251726951885
  • Novilla A, Djamhuri DS, Fauziah N, Maesaroh M, Balqis B, Widowati W. Cytotoxic activity of Mangosteen (Garcinia mangostana L.) peel extract and α-mangostin toward leukemia cell lines (HL-60 and K-562). J Nat Remedies. 2016;16(2):52. doi:10.18311/jnr/2016/842
  • Muchtaridi M, Wijaya CA. Anticancer potential of Α-Mangostin. Asian J Pharm Clin Res. 2017;10(12):440. doi:10.22159/ajpcr.2017.v10i12.20812
  • Scolamiero G, Pazzini C, Bonafè F, Guarnieri C, Muscari C. Effects of α-mangostin on viability, growth and cohesion of multicellular spheroids derived from human breast cancer cell lines. Int J Med Sci. 2018;15(1):23–30. doi:10.7150/ijms.2200229333084
  • Moongkarndi, P., Jaisupa, N., Kosem, N., Konlata, J., Samer, J., Pattanapanyasat, K. and Rodpai, E., 2015 Effect of purified α-mangostin from mangosteen pericarp on cytotoxicity, cell cycle arrest and apoptotic gene expression in human cancer cells. World J Pharm Sci, 3(8), pp.1473–84.
  • Kwak HH, Kim IR, Kim HJ, Park BS, Yu SB. α -Mangostin induces apoptosis and cell cycle arrest in oral squamous cell carcinoma cell. Evid Based Complement Alternat Med. 2016;2016. doi:10.1155/2016/5352412
  • Phan TKT, Shahbazzadeh F, Pham TTH, Kihara T. Alpha-mangostin inhibits the migration and invasion of A549 lung cancer cells. PeerJ. 2018;6:e5027. doi:10.7717/peerj.502729967723
  • Wang JJ, Sanderson BJS, Zhang W. Significant anti-invasive activities of α-mangostin from the mangosteen pericarp on two human skin cancer cell lines. Anticancer Res. 2012;32(9):3805–3816.22993323
  • Zhang C, Yu G, Shen Y. The naturally occurring xanthone α-mangostin induces ROS-mediated cytotoxicity in non-small scale lung cancer cells. Saudi J Biol Sci. 2018;25(6):1090–1095. doi:10.1016/j.sjbs.2017.03.00530174507
  • Rungnim C, Phunpee S, Kunaseth M, et al. Co-solvation effect on the binding mode of the α-mangostin/β-cyclodextrin inclusion complex. Beilstein J Org Chem. 2015;11(1):2306–2317. doi:10.3762/bjoc.11.25126734079
  • Zarena AS, Sankar KU. Synthesis of α− mangostin-D-glucoside in supercritical carbon dioxide media. J Food Sci Technol. 2015;52(10):6547–6555. doi:10.1007/s13197-014-1705-z26396400
  • Elsaid Ali AA, Taher M, Mohamed F. Microencapsulation of alpha-mangostin into PLGA microspheres and optimization using response surface methodology intended for pulmonary delivery. J Microencapsul. 2013;30(8):728–740. doi:10.3109/02652048.2013.78808123631380
  • Li L, Brunner I, Han A, Hamburger M, Kinghorn AD. Pharmacokinetics of a -mangostin in rats after intravenous and oral application. Mol Nutr Food Res. 2011;55(S1):67–74. doi:10.1002/mnfr.201000511
  • Pelivan K, Frensemeier L, Karst U, et al. Understanding the metabolism of the anticancer drug triapine: electrochemical oxidation, microsomal incubation and in vivo analysis using LC-HRMS. Analyst. 2017;142(17):3165–3176. doi:10.1039/C7AN00902J28745337
  • Khodadadei F, Safarian S, Ghanbari N. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater Sci Eng C. 2017;79:280–285. doi:10.1016/j.msec.2017.05.049
  • Sahoo CK, Reddy GS, Vojjala A, Reddy BV. Bioavailability enhancement for poorly soluble drugs: a review. Innoriginal Int J Sci. 2018:1–6.
  • Abuzar SM, Hyun S-M, Kim J-H, et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharm. 2018;538(1–2):1–13. doi:10.1016/j.ijpharm.2017.12.04129278733
  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185–198. doi:10.1146/annurev-med-040210-16254421888516
  • Singh R, Lillard JJW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–223. doi:10.1016/j.yexmp.2008.12.00419186176
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70. doi:10.1016/j.jsps.2017.10.01229379334
  • Chi X, Zi C, Li H, et al. RSC advances. RSC Adv. 2018;8(January):41377–41388. doi:10.1039/C8RA08409B
  • Xu W, Jiang H, Yang K, Wang Y, Zhang Q. ScienceDirect development and in vivo evaluation of self-microemulsion as delivery system for a –mangostin. Kaohsiung J Med Sci. 2017;116–123. doi:10.1016/j.kjms.2016.12.00328254113
  • Sodalee K, Sapsuphan P, Wongsirikul R. Preparation and evaluation of alpha-mangostin solid self-emulsifying drug delivery system. Asian J Pharm Sci. 2016;11(1):225–226. doi:10.1016/j.ajps.2015.11.024
  • Jittamaro P, Ruktanonchai UR, Phunpee S. Effect of solvent on the complex between α -Mangostin and β -Cyclodextrin α. Int Conf Chem Civ Mater Eng. 2015:5–9.
  • Phunpee S, Suktham K, Surassmo S, et al. Controllable encapsulation of ␣-mangostin with quaternized ␤-cyclodextrin grafted chitosan using high shear mixing, International Journal. Int J Pharm. 2017. doi:10.1016/j.ijpharm.2017.12.016
  • Dermawan D, Wathoni N, Muchtaridi M. Host-guest interactions of α− Mangostin with (α, β, γ)− Cyclodextrins: semi-empirical quantum mechanical methods of PM6 and PM7. J Young Pharm. 2019;11(1):31. doi:10.5530/jyp.2019.11.7
  • Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017;46(D1):D608–D617. doi:10.1093/nar/gkx1089
  • Kim S, Chen J, Cheng T, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2018;47(D1):D1102–D1109. doi:10.1093/nar/gky1033
  • Li P, Tian W, Ma X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol Cancer. 2014;13(1):138. doi:10.1186/1476-4598-13-13824894151
  • Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y. Characterized mechanism of α-mangostin-induced cell death: caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem. 2007;15(16):5620–5628. doi:10.1016/j.bmc.2007.04.07117553685
  • Shih Y-W, Chien S-T, Chen P-S, Lee J-H, Wu S-H, Yin L-T. α-Mangostin suppresses phorbol 12-myristate 13-acetate-induced MMP-2/MMP-9 expressions via αvβ3 integrin/FAK/ERK and NF-κB signaling pathway in human lung adenocarcinoma A549 cells. Cell Biochem Biophys. 2010;58(1):31–44. doi:10.1007/s12013-010-9091-220652762
  • Sato A, Fujiwara H, Oku H, Ishiguro K, Ohizumi Y. α-Mangostin induces Ca2+-ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J Pharmacol Sci. 2004;95(1):33–40. doi:10.1254/jphs.95.3315153648
  • Verma RK, Yu W, Shrivastava A, Shankar S, Srivastava RK. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice. Sci Rep. 2016;6(May):1–13. doi:10.1038/srep3274328442746
  • Thassu D, Deleers M, Pathak YV. Nanoparticulate Drug Delivery Systems. Vol. 166 CRC Press; 2007.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037. doi:10.1016/S1734-1140(12)70901-523238461
  • Langer R. Drug delivery and targeting. Nature. 1998;5–10.
  • Steiner D, Finke JH, Kwade A. Model-based description of disintegration time and dissolution rate of nanoparticle-loaded orodispersible films. Eur J Pharm Sci. 2019;132:18–26. doi:10.1016/j.ejps.2019.02.02930794870
  • Júlio A, Lima SAC, Reis S, de Almeida TS, Fonte P. Development of ionic liquid-polymer nanoparticle hybrid systems for delivery of poorly soluble drugs. J Drug Deliv Sci Technol. 2019;100915. doi:10.1016/j.jddst.2019.01.030
  • Braig V, Konnerth C, Peukert W, Lee G. Enhanced dissolution of naproxen from pure-drug, crystalline nanoparticles: a case study formulated into spray-dried granules and compressed tablets. Int J Pharm. 2019;554:54–60. doi:10.1016/j.ijpharm.2018.09.06930278257
  • Homayouni A, Amini M, Sohrabi M, Varshosaz J, Nokhodchi A. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization. Int J Pharm. 2019;562:124–134. doi:10.1016/j.ijpharm.2019.03.03830898640
  • Öztürk AA, Yenilmez E, Yazan Y. Dexketoprofen trometamol-loaded Eudragit® RL 100 nanoparticle formulation, characterization and release kinetics. ACTA Pharm Sci. 2019;57(1).
  • Chen X, Han W, Zhao X, Tang W, Wang F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci Rep. 2019;9(1):6754. doi:10.1038/s41598-019-43106-931043709
  • Tao Y, Yang F, Meng K, et al. Exploitation of enrofloxacin-loaded docosanoic acid solid lipid nanoparticle suspension as oral and intramuscular sustained release formulations for pig. Drug Deliv. 2019;26(1):273–280. doi:10.1080/10717544.2019.158079830880494
  • Lee P-C, Zan B-S, Chen L-T, Chung T-W. Multifunctional Plga-based nanoparticles as a controlled release drug delivery system for antioxidant and anticoagulant therapy. Int J Nanomedicine. 2019;14:1533. doi:10.2147/IJN.S17496230880963
  • Li S, Yuan C, Chen J, et al. Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release. Theranostics. 2019;9(3):884. doi:10.7150/thno.2944530809315
  • Saurabh CK, Gupta S, Variyar PS, Sharma A. Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Ind Crops Prod. 2016;89:109–118. doi:10.1016/j.indcrop.2016.05.003
  • Basha RY, Sampath Kumar TS, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym. 2019;218:53–62. doi:10.1016/j.carbpol.2019.04.05631221343
  • Chen W, Zhi M, Feng Z, et al. Sustained co-delivery of ibuprofen and basic fibroblast growth factor by thermosensitive nanoparticle hydrogel as early local treatment of peri-implantitis. Int J Nanomedicine. 2019;14:1347. doi:10.2147/IJN.S19078130863065
  • Hobson JJ, Al-khouja A, Curley P, et al. Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies. Nat Commun. 2019;10(1):1413. doi:10.1038/s41467-019-09354-z30926773
  • Li Y, Pu S, Liu Q, et al. An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis. J Control Release. 2019;303:77–90. doi:10.1016/j.jconrel.2019.04.02231004666
  • Lee JH, Moon H, Han H, et al. Antitumor effects of intra-arterial delivery of albumin-doxorubicin nanoparticle conjugated microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors. Cancers (Basel). 2019;11(4):581. doi:10.3390/cancers11040581
  • Zhang X, Li Y, Wei M, Liu C, Yu T, Yang J. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv. 2019;26(1):129–136. doi:10.1080/10717544.2018.156440330798640
  • Lei M, Sha S, Wang X, et al. Co-delivery of paclitaxel and gemcitabine via a self-assembling nanoparticle for targeted treatment of breast cancer. RSC Adv. 2019;9(10):5512–5520. doi:10.1039/C9RA00276F
  • Zayed DG, Ebrahim SM, Helmy MW, et al. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin–QDs nano-hybrids: covalent coupling and phospholipid complexation approaches. J Nanobiotechnology. 2019;17(1):7. doi:10.1186/s12951-019-0445-730660179
  • Fernández-Barahona I, Gutiérrez L, Veintemillas-Verdaguer S, et al. Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: one-pot synthesis and in vivo targeted molecular imaging. ACS Omega. 2019;4(2):2719–2727. doi:10.1021/acsomega.8b0300431459508
  • Wang X, Chen H, Zeng X, et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin B. 2019;9(1):167–176. doi:10.1016/j.apsb.2018.08.00630766788
  • Sancho-Albero M, Navascués N, Mendoza G, et al. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnology. 2019;17(1):16. doi:10.1186/s12951-018-0437-z30683120
  • Sun Y, Zhao Y, Teng S, et al. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int J Nanomedicine. 2019;14:135. doi:10.2147/IJN.S18129630613142
  • Zayed GM, El-feky GS. Growth factor loaded functionalized gold nanoparticles as potential targeted treatment for acute renal failure. Int J Appl Pharm. 2019;11(1):66–70.
  • AlQahtani SA, Harisa GI, Badran MM, et al. Nano-erythrocyte membrane-chaperoned 5-fluorouracil liposomes as biomimetic delivery platforms to target hepatocellular carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2019;47(1):989–996. doi:10.1080/21691401.2019.157788730873877
  • Liu X, Wang B, Li Y, et al. Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system. ACS Cent Sci. 2019;5:277–289. doi:10.1021/acscentsci.8b0068830834316
  • Zeng L, Qin C, Wang W, Chi W, Li W. Absorption and distribution of chitosan in mice after oral administration. Carbohydr Polym. 2008;71(3):435–440. doi:10.1016/j.carbpol.2007.06.016
  • Yan C, Gu J, Lv Y, Shi W, Huang Z, Liao Y. 5β-cholanic acid/glycol chitosan self-assembled nanoparticles (5β-CHA/GC-NPs) for enhancing the absorption of FDs and insulin by rat intestinal membranes. AAPS PharmSciTech. 2019;20(1):30. doi:10.1208/s12249-018-1242-630603934
  • Pi J, Wang S, Li W, et al. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J Pharm Sci. 2019;14(2):154–164. doi:10.1016/j.ajps.2018.04.00932104447
  • Elsaid Ali AA. Development of Chitosan-α-mangostin loaded nanoparticles as an anticancer agent; 2011.
  • Elsaid Ali AA. Development of alpha Mangostin-PLGA nanoparticles as an anticancer agent; 2011.
  • Yao L, Gu X, Song Q, et al. Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release. 2016;226:1–14. doi:10.1016/j.jconrel.2016.01.05526836197
  • Pan-In P, Wongsomboon A, Kokpol C, Chaichanawongsaroj N, Wanichwecharungruang S. Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci. 2015;129(4):226–232. doi:10.1016/j.jphs.2015.11.00526701606
  • Samprasit W, Akkaramongkolporn P, Jaewjira S, Opanasopit P. Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. J Drug Deliv Sci Technol. 2018;46:312–321. doi:10.1016/j.jddst.2018.05.029
  • Nguyen PTM, Tran LD, Dang NK, Nguyen DT. Synthesis of polymeric nanoparticles of α - mangostin and its cytotoxicity to human cancer cell lines. Biomed Res Ther. 2017;4:15419. doi:10.15419/bmrat.v4iS.307
  • Phunpee S, Suktham K, Surassmo S, et al. Controllable encapsulation of α-mangostin with quaternized β-cyclodextrin grafted chitosan using high shear mixing. Int J Pharm. 2018;538(1–2):21–29. doi:10.1016/j.ijpharm.2017.12.01629225100
  • Phương TNM, Phuong NT, Dai Lam T, Mai TT, Hop NT. Cytotoxicity of α- mangostin encapsulated polymeric nanoparticles against lung cancer cells. Tap Chi Sinh Hoc. 2018;40(1):108–114. doi:10.15625/0866-7160/v40n1.10504
  • Aisha AFA, Ismail Z, Abu-salah KM, Malik A, Abdul S. Solid dispersions of α -Mangostin improve its aqueous solubility through self-assembly of nanomicelles. J Pharm sci. 2012;101(2):815–825. doi:10.1002/jps22081501
  • Zheng S, Liu J, Faried A, Richard SA, Gao X. Novel chemically synthesized, alpha-Mangostin-loaded nano-particles, enhanced cell death through multiple pathways against malignant glioma. J Biomed Nanotechnol. 2018;14(11):1866–1882. doi:10.1166/jbn.2018.262730165924
  • Yang S, Gao X, He Y, Hu Y, Xu B, Cheng Z. Applying an innovative biodegradable self-assembly nanomicelles to deliver α -mangostin for improving anti-melanoma activity. Cell Death Dis. 2019. doi:10.1038/s41419-019-1323-9
  • Chen Z, Huang M, Wang X, et al. Transferrin-modified liposome promotes α-Mangostin to penetrate the blood-brain barrier. Nanomedicine. 2015. doi:10.1016/j.nano.2015.10.021
  • Chin GS, Todo H, Kadhum R, Hamid A, Sugibayashi K. In vitro permeation and skin retention of α -mangostin proniosome. Chem Pharm Bull. 2016;64(12):1666–1673. doi:10.1248/cpb.c16-0042527904075
  • Limphapayom W, Loylerd K, Leabwan N, Sukhasem S. Encapsulation of alpha-mangostin in cosmetic production by using nanotechnology. Int Symp Durian Other Humid Trop Fruits. 2017;189–192. doi:10.17660/ActaHortic.2017.1186.29
  • Yostawonkul J, Surassmo S, Namdee K, Khongkow M. Nanocarrier-mediated delivery of α -mangostin for non-surgical castration of male animals. Sci Rep. 2017;1–10. doi:10.1038/s41598-017-16563-328127051
  • Bonafè F, Pazzini C, Marchionni S, Guarnieri C, Muscari C. Complete disaggregation of MCF-7-derived breast tumour spheroids with very low concentrations of α -Mangostin loaded in CD44 thioaptamer-tagged nanoparticles. Int J Med Sci. 2019;16(1):33. doi:10.7150/ijms.2813530662326
  • Samprasit W, Rojanarata T, Akkaramongkolporn P, Ngawhirunpat T, Kaomongkolgit R, Opanasopit P. Fabrication and in vitro/in vivo performance of mucoadhesive electrospun nanofiber mats containing α -Mangostin. AAPS PharmSciTech. 2015;16(5):1140–1152. doi:10.1208/s12249-015-0300-625716329
  • Miftahul M. Mangosteen pericarp extract embedded in electrospun PVP nanofiber mats: physicochemical properties and release mechanism of α –mangostin. Int J Nanomedicine. 2018;13:4927–4941. doi:10.2147/IJN.S16767030214198
  • Karthiga P, Soranam R, Annadurai G. Alpha-mangostin, the major compound from Garcinia mangostana Linn. Responsible for synthesis of Ag nanoparticles: its characterization and evaluation studies. Res J Nanosci Nanotechnol. 2012;2(2):46–57. doi:10.3923/rjnn.2012.46.57
  • Iia T, Cyclodextrin PEI, Qiu S, et al. Delivery of tanshinone IIA and α-mangostin from Gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorg Med Chem Lett. 2016. doi:10.1016/j.bmcl.2016.03.097
  • Sodalee K, Sapsuphan P, Wongsirikul R, Puttipipatkhachorn S. Preparation and evaluation of alpha-mangostin solid self-emulsifying drug delivery system. Asian J Pharm Sci. 2016;11(1):225–226. doi:10.1016/j.ajps.2015.11.024
  • Liu T, Qiao Z, Wang J, et al. Molecular imprinted S-nitrosothiols nanoparticles for nitric oxide control release as cancer target chemotherapy. Colloids Surf B Biointerfaces. 2019;173:356–365. doi:10.1016/j.colsurfb.2018.09.07830316082
  • Kashyap S, Singh A, Mishra A, Singh V. Enhanced sustained release of furosemide in long circulating chitosan-conjugated PLGA nanoparticles. Res Pharm Sci. 2019;14(2):93–106. doi:10.4103/1735-5362.25335631620185
  • Sharma G, Parchur AK, Jagtap JM, Hansen CP, Joshi A. Hybrid nanostructures in targeted drug delivery In: Hybrid Nanostructures for Cancer Theranostics. Elsevier; 2019: 139–158.
  • Sun J, Wang F, Sui Y, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomedicine. 2012;7:5733.23166438
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–316. doi:10.1016/j.ajps.2014.05.005
  • Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Scalable imprinting of shape-specific polymeric nanocarriers using a release layer of switchable water solubility. ACS Nano. 2012;6(3):2524–2531. doi:10.1021/nn204915222385068
  • Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):701–705. doi:10.1016/j.addr.2011.12.00622210134
  • Attwood D. Surfactant Systems: Their Chemistry, Pharmacy and Biology. Springer Science & Business Media; 2012.
  • Nagarajan R. Self-Assembly: From Surfactants to Nanoparticles. Wiley; 2019.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18. doi:10.1016/j.colsurfb.2009.09.00119782542
  • Sahoo B, Devi KSP, Banerjee R, Maiti TK, Pramanik P, Dhara D. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces. 2013;5(9):3884–3893. doi:10.1021/am400572b23551195
  • Yoshida T, Lai TC, Kwon GS, Sako K. pH-and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv. 2013;10(11):1497–1513. doi:10.1517/17425247.2013.82197823930949
  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi:10.3389/fphar.2015.0028626648870
  • Rusdin A, Wathoni N, Motoyama K, Joni IM, Lesmana R. Nanoparticles targeted drug delivery system via epidermal growth factor receptor. J Pharm. 2019;1(3):77–91.
  • Kou G, Gao J, Wang H, et al. Preparation and characterization of paclitaxel-loaded PLGA nanoparticles coated with cationic SM5-1 single-chain antibody. BMB Rep. 2007;40(5):731–739. doi:10.5483/BMBRep.2007.40.5.731
  • Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci. 2008;105(45):17356–17361. doi:10.1073/pnas.080915410518978032
  • Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr C-M. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine. 2007;3(3):173–183. doi:10.1016/j.nano.2007.03.00617692575
  • Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release. 2009;140(2):166–173. doi:10.1016/j.jconrel.2009.08.01119699245
  • Nguyen J, Steele TWJ, Merkel O, Reul R, Kissel T. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Control Release. 2008;132(3):243–251. doi:10.1016/j.jconrel.2008.06.01018619502
  • Koby G, Ofra B, Dganit D, Marcelle M. Poly (d, l-lactide-co-glycolide acid) nanoparticles for DNA delivery: waiving preparation complexity and increasing efficiency. Biopolym Orig Res Biomol. 2007;85(5–6):379–391.