166
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Development and Study of Biocompatible Polyurethane-Based Polymer-Metallic Nanocomposites

ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, & show all
Pages 11-22 | Published online: 31 Mar 2020

References

  • Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Polymer concepts in tissue engineering. J Biomed Mater Res. 1998;43:422–427. doi:10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-19855200
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32:477–563. doi:10.1023/B:ABME.0000017544.36001.8e15095822
  • Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34:7–25. doi:10.1016/j.tibtech.2015.09.01226506111
  • Altintas Z, Gittens M, Guerreiro A, et al. Detection of waterborne viruses using high affinity molecularly imprinted polymers. Anal Chem. 2015;87:6801–6807. doi:10.1021/acs.analchem.5b0098926008649
  • Zhou X, Nie J, Du B. 4-(2-Pyridylazo)-resorcinol functionalized thermosensitive ionic microgels for optical detection of heavy metal ions at nanomolar level. ACS Appl Mater Interfaces. 2015;7:21966–21974. doi:10.1021/acsami.5b0665326370274
  • Teo AJT, Mishra A, Park I, Kim Y-J, Park W-T, Yoon Y-J. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016;2:454–472. doi:10.1021/acsbiomaterials.5b00429
  • Bay L, West K, Sommer-Larsen P, Skaarup S, Benslimane M. A conducting polymer artificial muscle with 12% linear strain. Adv Mater. 2003;15:310–313. doi:10.1002/adma.200390075
  • Kim HN, Zhiqian G, Weihong Z, Juyoung Y, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev. 2011;40:79–93. doi:10.1039/C0CS00058B21107482
  • Zare EN, Jamaledin R, Naserzadeh P, et al. Metal-Based nanostructures/PLGA nanocomposites: antimicrobial activity, cytotoxicity, and their biomedical applications. ACS Appl Mater Interfaces. 2020;12:3279–3300. doi:10.1021/acsami.9b1943531873003
  • Zare EN, Makvandi P, Borzacchiello A, Tay FR, Ashtari B, Padil VVT. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun. 2019;55:14871–14885.
  • Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J Med Chem. 2020;63:1–22. doi:10.1021/acs.jmedchem.9b0080331502840
  • Zare EN, Lakouraj MM, Mohseni M, Motahari A. Multilayered electromagnetic bionanocomposite based on alginic acid: characterization and biological activities. Carbohydr Polym. 2015;130:372–380. doi:10.1016/j.carbpol.2015.05.02026076638
  • Hasantabar V, Lakouraj MM, Zare EN, Mohseni M. Innovative magnetic tri-layered nanocomposites based on polyxanthone triazole, polypyrrole and iron oxide: synthesis, characterization and investigation of the biological activities. RSC Adv. 2015;5:70186–70196.
  • Hasantabar V, Lakouraj MM, Zare EN, Mohseni M. Synthesis, characterization, and biological properties of novel bioactive Poly(xanthoneamide‐triazole‐ethersulfone) and its multifunctional nanocomposite with polyaniline. Adv Polym Technol. 2017;36:309–319. doi:10.1002/adv.21609
  • Uzun L, Turner APF. Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron. 2016;76:131–144. doi:10.1016/j.bios.2015.07.01326189406
  • Huang Y, Tian Z, Sun LP, et al. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle. Opt Express. 2015;23:26962–26968. doi:10.1364/OE.23.02696226480357
  • Markos C, Yuan W, Vlachos K, Town GE, Bang O. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. Opt Express. 2011;19:7790–7798. doi:10.1364/OE.19.00779021503089
  • Donnet JB, Ehrburger P. Carbon fibre in polymer reinforcement. Carbon. 1977;15:143–152. doi:10.1016/0008-6223(77)90047-1
  • Makvandi P, Gu JT, Zare EN, et al. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater. 2020;101:69–101. doi:10.1016/j.actbio.2019.09.02531542502
  • Johnsson B, Löfås S, Lindquist G, Edström Å, Müller Hillgren R‐M, Hansson A. Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J Mol Recognit. 1995;8:125–131. doi:10.1002/jmr.3000801227541226
  • Hench LL, Joens JR. Biomaterials, Artificial Organs and Tissue Engineering. Woodhead Publish; 2005.
  • Puoci F. Advanced Polymers in Medicine. Springer; 2015.
  • Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32. doi:10.1186/2228-5326-2-32
  • Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4:858. doi:10.1007/s11671-009-9334-620596373
  • Baek YW, An YI. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb 2 O 3) to escherichia coli, bacillus subtilis, and streptococcus aureus. Sci Total Environ. 2011;409:1603–1608. doi:10.1016/j.scitotenv.2011.01.01421310463
  • Pan Y, Neuss S, Leifert A, et al. Size‐dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–1949. doi:10.1002/smll.20070037817963284
  • Hone DC, Walker P, Evans-Gowing R, et al. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir. 2002;18:2985–2987. doi:10.1021/la0256230
  • Li JJ, Zou L, Hartono D, Ong CN, Bay B‐H, Lanry Yung LY. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater. 2008;20:138–142. doi:10.1002/adma.200701853
  • Rekha K, Manjula N, Nair G, Anukaliani A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B Condens Matter. 2010;405:3180–3185. doi:10.1016/j.physb.2010.04.042
  • Jańczyk A, Krakowska E, Stochel G, Macyk W. Singlet oxygen photogeneration at surface modified titanium dioxide. J Am Chem Soc. 2006;128:15574–15575. doi:10.1021/ja065970m17147351
  • Wang C, Guo Z-X, Fu S, Wu W, Zhu D. Polymers containing fullerene or carbon nanotube structures. Prog Polym S. 2004;29:1079–1141. doi:10.1016/j.progpolymsci.2004.08.001
  • Berlin AA, Basin VE. The Cause of Adhesion in Polymers. Moscow; 1974.
  • Lipatov YS. Physical Chemistry of Filled Polymers. Moscow: Khimiya; 1977.
  • Shtarkman BP. Fundamentals of the Development of Thermoplastic Polymer Materials. Nizhny Novgorod: Nizhny Novgorod Humanitarian Center; 2004.
  • Zimon AD. Adhesion of Films and Coatings. Moscow: Khimiya; 1977.
  • Samiei E, Luka GS, Najjaran H, Hoorfar M. Integration of biosensors into digital microfluidics: impact of hydrophilic surface of biosensors on droplet manipulation. Biosens Bioelectron. 2016;81:480–486. doi:10.1016/j.bios.2016.03.03527016626
  • Luka G, Samiei E, Dehghani S, Johnson T, Najjaran H, Hoorfar M. Label-free capacitive biosensor for detection of cryptosporidium. Sensors. 2019;19:258. doi:10.3390/s19020258
  • Tang F, Meng X, Chen D, Ran J, Zheng C. Glucose biosensor enhanced by nanoparticles. Sci Chin Ser B Chem. 2000;43:268–274. doi:10.1007/BF02969521
  • Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1–13. doi:10.1016/j.actbio.2015.01.01825637065
  • Burunkova J, Denisiuk I, Vorzoba N, et al. Fabrication and characterization of gold/acrylic polymer nanocomposites. Eur Polym J. 2013;49:3072–3077. doi:10.1016/j.eurpolymj.2013.05.024
  • Burunkova J, Kokenyesi S, Csarnovics I, Bonyár A, Veres M, Csík A. Influence of gold nanoparticles on the photo-polymerization processes and structure in acrylate nanocomposites. Eur Polym J. 2015;64:189–195. doi:10.1016/j.eurpolymj.2015.01.011
  • Zhuk DI, Burunkova JA, Denisyuk IY, et al. Peculiarities of photonic crystal recording in functional polymer nanocomposites by multibeam interference holography. Polymer. 2017;112:136–143. doi:10.1016/j.polymer.2017.02.004
  • Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28:4192–4199. doi:10.1016/j.biomaterials.2007.05.04117604099
  • Mankoci S, Kaiser RL, Sahai N, Barton HA, Joy A. Bactericidal peptidomimetic polyurethanes with remarkable selectivity against escherichia coli. ACS Biomater Sci Eng. 2017;3:2588–2597. doi:10.1021/acsbiomaterials.7b00309
  • Salton MRJ, Kim KS. Structure In: Baron S, editor. Medical Microbiology. 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996. Chapter 2.
  • Kim SJ, Chang J, Singh M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta. 2014;1848:350–412. doi:10.1016/j.bbamem.2014.05.03124915020
  • Cochet F, Peri F. The role of carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling. Int J Mol Sci. 2017;18:2318. doi:10.3390/ijms18112318
  • Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev. 2016;40:480–573. doi:10.1093/femsre/fuw00727075488
  • Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev. 1998;62:130–180. doi:10.1128/MMBR.62.1.130-180.19989529890
  • Reis RL, Neves NM, Mano JF, Gomes ME, Marques AP, Azevedo HS. Natural-Based Polymers for Biomedical Applications. Woodhead Publishing; 2008.
  • Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial. Biochim Biophys Acta. 2016;1858:936–946. doi:10.1016/j.bbamem.2015.11.00426577273
  • Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs. Fron Cell Infect Microbiol. 2014;4:112.
  • Denisiuk I, Burunkova J, Zhuk D, et al. Fabrication and properties of luminescence polymer composites with erbium/ytterbium oxides and gold nanoparticles. Beilstein J Nanotechnol. 2016;7:630–636. doi:10.3762/bjnano.7.5527335752
  • Barbieri A, Accorsi G, Armaroli N. Luminescent complexes beyond the platinum group. Chem Com. 2008;19:2185–2278. doi:10.1039/b716650h
  • Tao B, Cheng F, Jiang X, Xia H. Synthesis, crystal structures and luminescent properties of nickel(II) and copper(II) hexaazamacrocyclic compounds with 1,3,5- benzenetricarboxylate ligands. J Mol Struct. 2012;1028:176–180. doi:10.1016/j.molstruc.2012.06.043
  • Bonyár A, Csarnovics I, Veres M, et al. Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications. Sensors Actuators B Chem. 2018;255:433–439. doi:10.1016/j.snb.2017.08.063