885
Views
62
CrossRef citations to date
0
Altmetric
Review

Role of Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications

ORCID Icon, , ORCID Icon, &
Pages 47-59 | Published online: 24 Jul 2020

References

  • Wong KV, De Leon O. Applications of Nanofluids: Current and Future, in Nanotechnology and Energy. Jenny Stanford Publishing; 2017:105–132.
  • Lim E-K, Jang E, Lee K, et al. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics. 2013;5(2):294–317. doi:10.3390/pharmaceutics502029424300452
  • Lim E-K, Kim T, Paik S, et al. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327–394. doi:10.1021/cr300213b25423180
  • Stankic S, Suman S, Haque F, et al. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology. 2016;14(1):1–20.26743777
  • Yu F, Chen Y, Liang X, et al. Dispersion stability of thermal nanofluids. Prog Nat Sci. 2017;27(5):531–542. doi:10.1016/j.pnsc.2017.08.010
  • Florence AT. “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J Controlled Release. 2012;164(2):115–124. doi:10.1016/j.jconrel.2012.03.022
  • Eytan O, Elad D. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol. 1999;61(2):221–238. doi:10.1006/bulm.1998.006917883209
  • Mekheimer KS. Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels. Appl Math Comput. 2004;153(3):763–777. doi:10.1016/S0096-3003(03)00672-6
  • Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2:519659. doi:10.1155/2010/519659
  • Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:17. doi:10.1155/2012/435873
  • Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renewable Sustainable Energy Rev. 2011;15(3):1646–1668. doi:10.1016/j.rser.2010.11.035
  • Choi SUS. Nanofluids: from vision to reality through research. J Heat Transfer. 2009;131(3):033106–033106-9. doi:10.1115/1.3056479
  • Park K. Controlled drug delivery systems: past forward and future back. J Controlled Release. 2014;190:3–8. doi:10.1016/j.jconrel.2014.03.054
  • Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18(6):397–400. doi:10.1016/j.rpor.2013.09.01124416585
  • De Jong WH, Borm PJA. Drug delivery and nanoparticles: applicationsand hazards. Int J Nanomedicine. 2008;3(2):133–149. doi:10.2147/IJN.S59618686775
  • Srinivasan S, Sawyer PN. Role of surface charge of the blood vessel wall, blood cells, and prosthetic materials in intravascular thrombosis. J Colloid Interface Sci. 1970;32(3):456–463. doi:10.1016/0021-9797(70)90131-15417531
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi:10.1016/j.ijpharm.2005.10.01016303268
  • Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm. 1998;46(3):255–263. doi:10.1016/S0939-6411(98)00038-19885296
  • Puglia C, Tirendi GG, Bonina F. Emerging role of colloidal drug delivery systems (CDDS) in NSAID topical administration. Curr Med Chem. 2013;20(14):1847–1857. doi:10.2174/092986731132014000423410154
  • Gorfine SR, Onel E, Patou G, et al. Bupivacaine extended-release liposome injection for prolonged postsurgical analgesia in patients undergoing hemorrhoidectomy: a multicenter, randomized, double-blind, placebo-controlled trial. Dis Colon Rectum. 2011;54(12):1552–1559. doi:10.1097/DCR.0b013e318232d4c122067185
  • Bárcena C, Sra AK, Gao J. Applications of Magnetic Nanoparticles in Biomedicine, in Nanoscale Magnetic Materials and Applications. Springer; 2009:591–626.
  • Kothandapani M, Prakash J. The peristaltic transport of Carreau nanofluids under effect of a magnetic field in a tapered asymmetric channel: application of the cancer therapy. J Mech Med Biol. 2015;15(03):1550030. doi:10.1142/S021951941550030X
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36(13):R167. doi:10.1088/0022-3727/36/13/201
  • Katz E. Magnetic Nanoparticles. Multidisciplinary Digital Publishing Institute; 2020.
  • Hosu O, Tertis M, Cristea C. Implication of Magnetic Nanoparticles in Cancer Detection, Screening and Treatment. Magnetochemistry. 2019;5(4):55. doi:10.3390/magnetochemistry5040055
  • Yew YP, Shameli K, Miyake M, et al. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab J Chem. 2020;13(1):2287–2308. doi:10.1016/j.arabjc.2018.04.013
  • Choi K-H, Nam K, Cho G, et al. Enhanced photodynamic anticancer activities of multifunctional magnetic nanoparticles (Fe₃O₄) Conjugated with chlorin e6 and folic acid in prostate and breast cancer cells. Nanomaterials. 2018;8(9):722. doi:10.3390/nano8090722
  • Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468(3):463–470. doi:10.1016/j.bbrc.2015.08.02226271592
  • Jayaprabha KN, Joy PA. Citrate modified β-cyclodextrin functionalized magnetite nanoparticles: a biocompatible platform for hydrophobic drug delivery. RSC Adv. 2015;5(28):22117–22125. doi:10.1039/C4RA16044D
  • Banerjee SS, Chen D-H. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem Mater. 2007;19(25):6345–6349. doi:10.1021/cm702278u
  • Lim E-K, Huh Y-M, Yang J, et al. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater. 2011;23(21):2436–2442. doi:10.1002/adma.20110035121491515
  • Lim E-K, Chung BH, Chung SJ. Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets. 2018;19(4):300–317. doi:10.2174/138945011766616060220233927262486
  • Meng E, Hoang T. Micro-and nano-fabricated implantable drug-delivery systems. Ther Deliv. 2012;3(12):1457–1467. doi:10.4155/tde.12.13223323562
  • Bugliarello G, Sevilla J. Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology. 1970;7(2):85–107. doi:10.3233/BIR-1970-72025484335
  • Wiedeman MP. Dimensions of blood vessels from distributing artery to collecting vein. Circ Res. 1963;12(4):375–378. doi:10.1161/01.RES.12.4.37514000509
  • Singh S, Bhargava R. Simulation of phase transition during cryosurgical treatment of a tumor tissue loaded with nanoparticles using meshfree approach. J Heat Transfer. 2014;136(12):121101. doi:10.1115/1.4028730
  • Chua K, Chou S, Ho J. An analytical study on the thermal effects of cryosurgery on selective cell destruction. J Biomech. 2007;40(1):100–116. doi:10.1016/j.jbiomech.2005.11.00516368100
  • Kleinstreuer C, Li J, Koo J. Microfluidics of nano-drug delivery. Int J Heat Mass Transf. 2008;51(23):5590–5597. doi:10.1016/j.ijheatmasstransfer.2008.04.043
  • Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309. doi:10.2147/ijn.s59518990939
  • Fakhroueian Z, Dehshiri AM, Katouzian F, et al. In vitro cytotoxic effects of modified zinc oxide quantum dots on breast cancer cell lines (MCF7), colon cancer cell lines (HT29) and various fungi. J Nanopart Res. 2014;16(7):2483. doi:10.1007/s11051-014-2483-2
  • Yuan L, Wang Y, Wang J, et al. Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. Toxicol Lett. 2014;225(2):294–304. doi:10.1016/j.toxlet.2013.12.01524374571
  • Abdolmohammadi MH, Fallahian F, Fakhroueian Z, et al. Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells. Artif Cells Nanomed Biotechnol. 2017;45(8):1769–1777. doi:10.1080/21691401.2017.129064328278581
  • Tran N, Webster TJ. Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem. 2010;20(40):8760–8767. doi:10.1039/c0jm00994f
  • Dotan I, Roche PJR, Paliouras M, et al. Engineering Multi-walled carbon nanotube therapeutic bionanofluids to selectively target papillary thyroid cancer cells. PLoS One. 2016;11(2):e0149723. doi:10.1371/journal.pone.014972326901566
  • Gas P, Essential Facts on the History of Hyperthermia and their Connections with Electromedicine. arXiv preprint arXiv:1710.00652, 2017.
  • Chiriac H, Petreus T, Carasevici E, et al. In vitro cytotoxicity of Fe–Cr–Nb–B magnetic nanoparticles under high frequency electromagnetic field. J Magn Magn Mater. 2015;380:13–19. doi:10.1016/j.jmmm.2014.10.015
  • Moroz P, Jones S, Gray B. Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia. 2002;18(4):267–284. doi:10.1080/0265673011010878512079583
  • Hedayatnasab Z, Abnisa F, Daud WMAW. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–196. doi:10.1016/j.matdes.2017.03.036
  • Salloum M, Ma R, Zhu L. Controlling nanoparticle delivery in hyperthermia for cancer treatment: in vitro experimental study. in ASME 2007 International Mechanical Engineering Congress and Exposition 2007 American Society of Mechanical Engineers.Saettle, Washington,USA.
  • Attaluri A, Ma R, Zhu L. Using microCT imaging technique to quantify heat generation distribution induced by magnetic nanoparticles for cancer treatments. J Heat Transfer. 2011;133(1):011003. doi:10.1115/1.4002225
  • Lv Y-G, Deng Z-S, Liu J. 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field. IEEE Trans Nanobioscience. 2005;4(4):284–294. doi:10.1109/TNB.2005.85954916433294
  • Frazier N, Ghandehari H. Hyperthermia approaches for enhanced delivery of nanomedicines to solid tumors. Biotechnol Bioeng. 2015;112(10):1967–1983. doi:10.1002/bit.2565325995079
  • Salloum M, Ma R, Zhu L. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int J Hyperthermia. 2008;24(7):589–601. doi:10.1080/0265673080220337718979310
  • Saleh H, Alali E, Ebaid A. Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence of convective condition using Laplace transform. J Assoc Arab Univ Basic Appl Sci. 2017;24(1):206–212. doi:10.1016/j.jaubas.2016.12.001
  • Ebaid A, Aly EH. Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: application to the cancer treatment. Comput Math Methods Med. 2013;2013:1–8. doi:10.1155/2013/825376
  • Fang K, Song L, Gu Z, et al. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf B Biointerfaces. 2015;136:712–720. doi:10.1016/j.colsurfb.2015.10.01426513754
  • Hou Y, Sun Z, Rao W, et al. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine. 2018;14(2):493–506. doi:10.1016/j.nano.2017.11.01829197593
  • Liu J, Deng Z-S. Nano-Cryosurgery: advances and Challenges. J Nanosci Nanotechnol. 2009;9(8):4521–4542. doi:10.1166/jnn.2009.126419928115
  • Vazhnichaya YM, Mokliak YV, Zabozlaev AA. Effectiveness of Magnetite Nanoparticles Stabilized by 3-hydroxypyridine Derivative and Polyvinyl Pyrrolidone in Experimental Therapy of Acute Blood Loss. Современные технологии в медицине. 2015;7:84–91.
  • Friedman M, Mikityansky I, Kam A, et al. Radiofrequency ablation of cancer. Cardiovasc Intervent Radiol. 2004;27(5):427–434. doi:10.1007/s00270-004-0062-015383844
  • Wu Q, Zhang H, Chen M, et al. Preparation of carbon‐coated iron nanofluid and its application in radiofrequency ablation. J Biomed Mater Res B Appl Biomater. 2015;103(4):908–914. doi:10.1002/jbm.b.3327525171467
  • Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C. 2013;33(8):4485–4497. doi:10.1016/j.msec.2013.07.012
  • Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727–1741. doi:10.2147/IJN.S7650125834422
  • Xiao Y-D, Paudel R, Liu J, et al. MRI contrast agents: classification and application. Int J Mol Med. 2016;38(5):1319–1326. doi:10.3892/ijmm.2016.274427666161
  • Shellock FG, Kanal E. Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging. 1999;10(3):477–484. doi:10.1002/(SICI)1522-2586(199909)10:3<477::AID-JMRI33>3.0.CO;2-E10508312
  • Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical applications. Prog Solid State Chem. 2006;34(2):237–247. doi:10.1016/j.progsolidstchem.2005.11.010
  • Gao Z, Ma T, Zhao E, et al. Small is smarter: nano MRI contrast agents - advantages and recent achievements. Small. 2016;12(5):556–576. doi:10.1002/smll.20150230926680328
  • Zhou Z, Lu ZR. Gadolinium‐based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):1–18. doi:10.1002/wnan.119823047730
  • Su HY, Chang-Qiang W, Dan-Yang L, et al. Self-assembled superparamagnetic nanoparticles as MRI contrast agents - A review. Chin Phys B. 2015;24(12):127506.
  • Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol clin oncol. 2017;7(5):738–746. doi:10.3892/mco.2017.139929075487
  • Huang S, Yan W, Hu G, et al. Facile and green synthesis of biocompatible and bioconjugatable magnetite nanofluids for high-resolution T 2 MRI contrast agents. J Phys Chem C. 2012;116(38):20558–20563. doi:10.1021/jp305211d
  • Beyth N, Houri-Haddad Y, Domb A, et al. Alternative antimicrobial approach: nano-antimicrobial materials. Evidence Based Complementary Altern Med. 2015;2015:1–16. doi:10.1155/2015/246012
  • Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3(7):643–646. doi:10.1016/S1466-6049(01)00197-0
  • Li Q, Mahendra S, Lyon DY, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–4602. doi:10.1016/j.watres.2008.08.01518804836
  • Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006;40(19):3527–3532. doi:10.1016/j.watres.2006.08.00417011015
  • Jones N, Ray B, Ranjit KT, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71–76. doi:10.1111/j.1574-6968.2007.01012.x18081843
  • Vandebriel RJ, De Jong WH. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl. 2012;5:61–71. doi:10.2147/NSA.S2393224198497
  • Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett. 2015;7(3):219–242. doi:10.1007/s40820-015-0040-x
  • Zhang L, Jiang Y, Ding Y, et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007;9(3):479–489. doi:10.1007/s11051-006-9150-1
  • Wei C, Lin WY, Zainal Z, et al. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol. 1994;28(5):934–938. doi:10.1021/es00054a02722191837
  • Tong K, Song X, Xiao G, et al. Colloidal processing of mg(oh) 2 aqueous suspensions using sodium polyacrylate as dispersant. Ind Eng Chem Res. 2014;53(12):4755–4762. doi:10.1021/ie5002857
  • Dong C, Cairney J, Sun Q, et al. Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. J Nanopart Res. 2010;12(6):2101–2109. doi:10.1007/s11051-009-9769-9
  • Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res. 2011;13(12):6877–6885. doi:10.1007/s11051-011-0595-5
  • Leung YH, Ng AMC, Xu X, et al. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards escherichia coli. Small. 2014;10(6):1171–1183. doi:10.1002/smll.20130243424344000
  • Usman MS, El Zowalaty ME, Shameli K, et al. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;8:4467–4479. doi:10.2147/IJN.S5083724293998
  • Mahapatra O, Bhagat M, Gopalakrishnan C, et al. Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci. 2008;3(3):185–193. doi:10.1080/17458080802395460
  • Grumezescu AM, Saviuc CChifiriuc MC, et al. Inhibitory activity of Fe(3) O(4)/oleic acid/usnic acid-core/shell/extra-shell nanofluid on S. aureus biofilm development. IEEE Trans Nanobioscience. 2011;10(4):269–274.22157076
  • Thekkae Padil VV, Cernik M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine. 2013;8:889–898. doi:10.2147/IJN.S4059923467397
  • Akbar NS, Butt AW. Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall. J Magn Magn Mater. 2015;381:285–291. doi:10.1016/j.jmmm.2014.12.084
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83. doi:10.1016/j.biotechadv.2008.09.00218854209
  • Akter M, Sikder MT, Rahman MM, et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2018;9:1–16. doi:10.1016/j.jare.2017.10.00830046482
  • Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–12. doi:10.1016/j.toxlet.2007.10.00418022772
  • Cui Y, Zhao Y, Tian Y, et al. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33(7):2327–2333. doi:10.1016/j.biomaterials.2011.11.05722182745
  • Vazhnichaya YM, Mokliak YV, Zabozlaev A. Effectiveness of magnetite nanoparticles stabilized by 3-hydroxypyridine derivative and polyvinyl pyrrolidone in experimental therapy of acute blood loss. Современные технологии в медицине. 2015;7(2 (eng)).
  • Gordon T, Perlstein B, Houbara O, et al. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf a Physicochem Eng Asp. 2011;374(1–3):1–8. doi:10.1016/j.colsurfa.2010.10.015
  • Yadav N, Jaiswal AK, Dey KK, et al. Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response. Mater Chem Phys. 2018;218:10–17. doi:10.1016/j.matchemphys.2018.07.016
  • Buteicǎ AS, et al. The anti-bacterial activity of magnetic nanofluid: fe3O4/oleic acid/cephalosporins core/shell/adsorption-shell proved on S. Aureus and E. Coli and possible applications as drug delivery systems. Digest J Nanomater Biostruct. 2010;5(4):927–932.
  • Anghel I, Grumezescu A, Holban A, et al. Biohybrid nanostructured iron oxide nanoparticles and Satureja hortensis to prevent fungal biofilm development. Int J Mol Sci. 2013;14(9):18110–18123. doi:10.3390/ijms14091811024009022
  • He X, Park EYH, Fowler A, et al. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: A study using murine embryonic stem cells. Cryobiology. 2008;56(3):223–232. doi:10.1016/j.cryobiol.2008.03.00518462712