193
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Nanoparticles Affect the Expression Stability of Housekeeping Genes in Plant Cells

ORCID Icon & ORCID Icon
Pages 77-88 | Published online: 13 Aug 2020

References

  • Kruszka D, Sawikowska A, Selvakesavan, et al. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci Total Environ. 2020;716:135361. doi:10.1016/j.scitotenv.2019.13536131839324
  • Zhou W, Wang S, Yang L, et al. Reference genes for qRT-PCR normalisation in different tissues, developmental stages, and stress conditions of Hypericum perforatum. PeerJ. 2019;7:e7133–e7133. doi:10.7717/peerj.713331259099
  • Jin Y, Liu F, Huang W, Sun Q, Huang X. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data. Sci Rep. 2019;9(1):8408. doi:10.1038/s41598-019-44849-131182737
  • Zhang L, Zhang Q, Jiang Y, Li Y, Zhang H, Li R. Reference genes identification for normalization of qPCR under multiple stresses in Hordeum brevisubulatum. Plant Meth. 2018;14(1):110. doi:10.1186/s13007-018-0379-3
  • Coêlho MRV, Rivas R, Ferreira-Neto JRC, et al. Reference genes selection for Calotropis procera under different salt stress conditions. PLoS One. 2019;14(4):1–20. doi:10.1371/journal.pone.0215729
  • Velada I, Ragonezi C, Arnholdt-Schmitt B, Cardoso H. Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L. PLoS One. 2014;9(12):e115206–e115206. doi:10.1371/journal.pone.011520625503716
  • Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27(2–3):95–125. doi:10.1016/j.mam.2005.12.00716460794
  • Laamiri N, Aouini R, Marnissi B, Ghram A, Hmila I. A multiplex real-time RT-PCR for simultaneous detection of four most common avian respiratory viruses. Virology. 2018;515:29–37. doi:10.1016/j.virol.2017.11.02129223788
  • Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.1. doi:10.1186/gb-2002-3-7-research0034
  • Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245LP- 5250. doi:10.1158/0008-5472.CAN-04-049615289330
  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper – excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–515. doi:10.1023/B:BILE.0000019559.84305.4715127793
  • Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80(1):75–84. doi:10.1007/s11103-012-9885-2
  • Marslin G, Sheeba CJ, Franklin G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci. 2017;8:832. doi:10.3389/fpls.2017.0083228580002
  • Lee JH, Kim YS, Song KS, et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol. 2013;10:36. doi:10.1186/1743-8977-10-3624059869
  • Gurunathan S, Qasim M, Park C, et al. Cytotoxicity and transcriptomic analysis of silver nanoparticles in mouse embryonic fibroblast cells. Int J Mol Sci. 2018;19(11):3618. doi:10.3390/ijms19113618
  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem. 2013;32(4):902–907. doi:10.1002/etc.213123341248
  • Thomas MP, Liu X, Whangbo J, et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3ʹ uridylated intermediates degraded by DIS3L2. Cell Rep. 2015;11(7):1079–1089. doi:10.1016/j.celrep.2015.04.02625959823
  • Falcone C, Mazzoni C. RNA stability and metabolism in regulated cell death, aging and diseases. FEMS Yeast Res. 2018;18:6. doi:10.1093/femsyr/foy050
  • Saulou-Bérion C, Gonzalez I, Enjalbert B, et al. Escherichia coli under ionic silver stress: an integrative approach to explore transcriptional, physiological and biochemical responses. PLoS One. 2015;10(12):e0145748. doi:10.1371/journal.pone.014574826696268
  • Mosa KA, El-Naggar M, Ramamoorthy K, et al. Copper nanoparticles induced genotoxicty, oxidative stress, and changes in Superoxide Dismutase (SOD) gene expression in Cucumber (Cucumis sativus) plants. Front Plant Sci. 2018;9:872. doi:10.3389/fpls.2018.0087230061904
  • Yan A, Chen Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci. 2019;20(5):1003. doi:10.3390/ijms20051003
  • Krystofova O, Sochor J, Zitka O, et al. Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture. Int J Environ Res Public Health. 2012;10(1):47–71. doi:10.3390/ijerph1001004723343980
  • Abbasi BH, Zahir A, Ahmad W, Nadeem M, Giglioli-Guivarc’h N, Hano C. Biogenic zinc oxide nanoparticles-enhanced biosynthesis of lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Artif Cells Nanomedicine Biotechnol. 2019;47(1):1367–1373. doi:10.1080/21691401.2019.1596942
  • Zahir A, Nadeem M, Ahmad W, Giglioli-Guivarc’h N, Hano C, Abbasi BH. Chemogenic silver nanoparticles enhance lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Plant Cell Tissue Organ Cult. 2019;136(3):589–596. doi:10.1007/s11240-018-01539-6
  • Chung I-M, Rajakumar G, Subramanian U, Venkidasamy B, Thiruvengadam M. Impact of copper oxide nanoparticles on enhancement of bioactive compounds using cell suspension cultures of gymnema sylvestre (Retz.). R Br Appl Sci. 2019;9:2165. doi:10.3390/app9102165
  • Poborilova Z, Opatrilova R, Babula P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot. 2013;91:1–11. doi:10.1016/J.ENVEXPBOT.2013.03.002
  • Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain Chem Eng. 2019;7(17):14580–14590. doi:10.1021/acssuschemeng.9b02180
  • Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 2009;407(19):5243–5246. doi:10.1016/j.scitotenv.2009.06.02419616276
  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66(3):303–310. doi:10.1007/s10725-011-9649-z
  • Song U, Jun H, Waldman B, et al. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf. 2013;93:60–67. doi:10.1016/j.ecoenv.2013.03.03323651654
  • Ottoni CA, Lima Neto MC, Léo P, Ortolan BD, Barbieri E, De Souza AO. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere. 2020;239:124698. doi:10.1016/j.chemosphere.2019.12469831493753
  • Chung I-M, Rekha K, Rajakumar G, Thiruvengadam M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. 3 Biotech. 2018;8(10):412. doi:10.1007/s13205-018-1439-0
  • Fazal H, Abbasi BH, Ahmad N, et al. Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artif Cells Nanomedicine Biotechnol. 2019;47(1):2553–2561. doi:10.1080/21691401.2019.1625913
  • Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem. 2010;399(2):257–261. doi:10.1016/j.ab.2009.12.00820005862
  • Hossain MS, Ahmed R, Haque MS, Alam MM, Islam MS. Identification and validation of reference genes for real-time quantitative RT-PCR analysis in jute. BMC Mol Biol. 2019;20(1):13. doi:10.1186/s12867-019-0130-231035927
  • Le WM, Li QH, Xin HH, Chen X, Zhu XJ, Li XH. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses. PLoS One. 2017;12(4):e0175863–e0175863. doi:10.1371/journal.pone.017586328453515
  • Yan X, Dong X, Zhang W, et al. Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica. PLoS One. 2014;9(8):e104124–e104124. doi:10.1371/journal.pone.010412425117551
  • Cai J, Li P, Luo X, et al. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley. PLoS One. 2018;13(1):e0190559–e0190559. doi:10.1371/journal.pone.019055929309420
  • Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–W570. doi:10.1093/nar/gkv46825969447
  • Antonov J, Goldstein DR, Oberli A, et al. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Investig. 2005;85(8):1040–1050. doi:10.1038/labinvest.370030315951835
  • Cholet F, Ijaz UZ, Smith CJ. Differential ratio amplicons (Ramp) for the evaluation of RNA integrity extracted from complex environmental samples. Environ Microbiol. 2019;21(2):827–844. doi:10.1111/1462-2920.1451630585386
  • Sun H, Jiang X, Sun M, Cong H, Qiao F. Evaluation of reference genes for normalizing RT-qPCR in leaves and suspension cells of Cephalotaxus hainanensis under various stimuli. Plant Meth. 2019;15(1):31. doi:10.1186/s13007-019-0415-y
  • Browning KS. The plant translational apparatus. Plant Mol Biol. 1996;32(1):107–144. doi:10.1007/BF000393808980477
  • Takamori LM, Pereira AVC, Maia Souza G, Vieira LGE, Ferreira Ribas A. Identification of endogenous reference genes for RT-qPCR expression analysis in urochloa brizantha under abiotic stresses. Sci Rep. 2017;7(1):8502. doi:10.1038/s41598-017-09156-728819216
  • Zhu J, Zhang L, Li W, Han S, Yang W, Qi L. Reference gene selection for quantitative real-time PCR normalization in caragana intermedia under different abiotic stress conditions. PLoS One. 2013;8(1):e53196. doi:10.1371/journal.pone.005319623301042
  • Li J, Han X, Wang C, et al. Validation of suitable reference genes for RT-qPCR data in achyranthes bidentata blume under different experimental conditions. Front Plant Sci. 2017;8:776. doi:10.3389/fpls.2017.0077628559905
  • Kaveh R, Li Y-S, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol. 2013;47(18):10637–10644. doi:10.1021/es402209w23962165
  • Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ Toxicol Chem. 2015;34(1):70–83. doi:10.1002/etc.275625242526
  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng. 2013;1(7):768–778. doi:10.1021/sc400098h
  • Wang X, Yang X, Chen S, et al. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Front Plant Sci. 2016;6:1243. doi:10.3389/fpls.2015.0124326793220
  • Gopalakrishnan Nair PM, Chung I-M. Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles. Bull Environ Contam Toxicol. 2014;92(6):719–725. doi:10.1007/s00128-014-1254-124652625