456
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Effects of Caffeine Intake on Cognitive Performance Related to Total Sleep Deprivation and Time on Task: A Randomized Cross-Over Double-Blind Study

ORCID Icon, ORCID Icon, , , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 457-473 | Published online: 16 Mar 2022

References

  • Hockey R. The Psychology of Fatigue: Work, Effort and Control. Cambridge. UK: Cambridge University Press; 2013.
  • Caldwell JA, Caldwell JL, Thompson LA, Lieberman HR. Fatigue and its management in the workplace. Neurosci Biobehav Rev. 2019;96:272–289. doi:10.1016/j.neubiorev.2018.10.024
  • Boksem MA, Tops M. Mental fatigue: costs and benefits. Brain Res Rev. 2008;59(1):125–139. doi:10.1016/j.brainresrev.2008.07.001
  • Baumeister RF, Bratslavsky E, Muraven M, Tice DM. Ego depletion: is the active self a limited resource? J Pers Soc Psychol. 1998;74(5):1252–1265. doi:10.1037/0022-3514.74.5.1252
  • Pattyn N, Neyt X, Henderickx D, Soetens E. Psychophysiological investigation of vigilance decrement: boredom or cognitive fatigue? Physiol Behav. 2008;93(1–2):369–378. doi:10.1016/j.physbeh.2007.09.016
  • Matthews G. Personality and individual differences in cognitive fatigue. In: Association AP, editor. Decade of Behavior/Science Conference. Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future Applications. Washington, DC, US: American Psychological Association; 2011:209–227.
  • Borbely AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25(2):131–143. doi:10.1111/jsr.12371
  • Krause AJ, Simon EB, Mander BA, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18(7):404–418.
  • Arnal PJ, Sauvet F, Leger D, et al. Benefits of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and recovery. Sleep. 2015;38(12):1935–1943. doi:10.5665/sleep.5244
  • Rabat A, Arnal PJ, Monnard H, et al. Limited benefit of sleep extension on cognitive deficits during total sleep deprivation: illustration with two executive processes. Front Neurosci. 2019;13:591. doi:10.3389/fnins.2019.00591
  • Lim J, Ebstein R, Tse CY, et al. Dopaminergic polymorphisms associated with time-on-task declines and fatigue in the psychomotor vigilance test. PLoS One. 2012;7(3):e33767. doi:10.1371/journal.pone.0033767
  • Gui D, Xu S, Zhu S, et al. Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload. Neuroimage. 2015;120:323–330. doi:10.1016/j.neuroimage.2015.07.030
  • Phipps-Nelson J, Redman JR, Rajaratnam SM. Temporal profile of prolonged, night-time driving performance: breaks from driving temporarily reduce time-on-task fatigue but not sleepiness. J Sleep Res. 2011;20(3):404–415. doi:10.1111/j.1365-2869.2010.00900.x
  • Barwick F, Arnett P, Slobounov S. EEG correlates of fatigue during administration of a neuropsychological test battery. Clin Neurophysiol. 2012;123(2):278–284. doi:10.1016/j.clinph.2011.06.027
  • Gorgoni M, Ferlazzo F, Ferrara M, et al. Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation. Sleep Med. 2014;15(9):1132–1139. doi:10.1016/j.sleep.2014.04.022
  • Wascher E, Rasch B, Sanger J, et al. Frontal theta activity reflects distinct aspects of mental fatigue. Biol Psychol. 2014;96:57–65. doi:10.1016/j.biopsycho.2013.11.010
  • Asplund CL, Chee MWL. Time-on-task and sleep deprivation effects are evidenced in overlapping brain areas. Neuroimage. 2013;82:326–335. doi:10.1016/j.neuroimage.2013.05.119
  • Veksler BZ, Gunzelmann G. Functional equivalence of sleep loss and time on task effects in sustained attention. Cogn Sci. 2018;42(2):600–632. doi:10.1111/cogs.12489
  • Xu J, Zhu Y, Fu C, et al. Frontal metabolic activity contributes to individual differences in vulnerability toward total sleep deprivation-induced changes in cognitive function. J Sleep Res. 2015;25(2):169–180. doi:10.1111/jsr.12354
  • Yeo BT, Tandi J, Chee MW. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. Neuroimage. 2015;111:147–158. doi:10.1016/j.neuroimage.2015.02.018
  • Lei Y, Shao Y, Wang L, et al. Large-scale brain network coupling predicts total sleep deprivation effects on cognitive capacity. PLoS One. 2015;10(7):e0133959. doi:10.1371/journal.pone.0133959
  • Thomas M, Sing H, Belenky G, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000;9(4):335–352. doi:10.1046/j.1365-2869.2000.00225.x
  • Martin K, Thompson KG, Keegan R, Ball N, Rattray B. Mental fatigue does not affect maximal anaerobic exercise performance. Eur J Appl Physiol. 2015;115(4):715–725. doi:10.1007/s00421-014-3052-1
  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276(5316):1265–1268. doi:10.1126/science.276.5316.1265
  • Urry E, Landolt HP. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics. Curr Top Behav Neurosci. 2015;25:331–366.
  • Killgore WDS, Kamimori GH. Multiple caffeine doses maintain vigilance, attention, complex motor sequence expression, and manual dexterity during 77 hours of total sleep deprivation. Neurobiol Sleep Circadian Rhythms. 2020;9:100051. doi:10.1016/j.nbscr.2020.100051
  • Aidman E, Balin M, Johnson K, et al. Caffeine may disrupt the impact of real-time drowsiness on cognitive performance: a double-blind, placebo-controlled small-sample study. Sci Rep. 2021;11(1):4027. doi:10.1038/s41598-021-83504-6
  • Erblang M, Sauvet F, Drogou C, et al. Genetic determinants of neurobehavioral responses to caffeine administration during sleep deprivation: a randomized, cross over study (NCT03859882). Genes. 2021;12:555. doi:10.3390/genes12040555
  • Åkerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci. 1990;52:29–37. doi:10.3109/00207459008994241
  • Drummond SP, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ. The neural basis of the psychomotor vigilance task. Sleep. 2005;28(9):1059–1068.
  • Bougard C, VanBeers P, Sauvet F, et al. Motorcycling performance and sleepiness during an extended ride on a dynamic simulator: relationship with stress biomarkers. Physiol Meas. 2020;41(10):104004. doi:10.1088/1361-6579/abb75e
  • McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312. doi:10.1016/j.neubiorev.2016.09.001
  • Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. doi:10.1155/2011/156869
  • Sauvet F, Erblang M, Gomez-Merino D, et al. Efficacy of THN102 (a combination of modafinil and flecainide) on vigilance and cognition during 40-hour total sleep deprivation in healthy subjects: glial connexins as a therapeutic target. Br J Clin Pharmacol. 2019;85(11):2623–2633. doi:10.1111/bcp.14098
  • Lythe KE, Williams SC, Anderson C, Libri V, Mehta MA. Frontal and parietal activity after sleep deprivation is dependent on task difficulty and can be predicted by the fMRI response after normal sleep. Behav Brain Res. 2012;233(1):62–70. doi:10.1016/j.bbr.2012.04.050
  • Satterfield BC, Wisor JP, Schmidt MA, Van Dongen HPA. Time-on-task effect during sleep deprivation in healthy young adults is modulated by dopamine transporter genotype. Sleep. 2017;40(12). doi:10.1093/sleep/zsx167
  • Maire M, Reichert CF, Gabel V, et al. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation. Front Behav Neurosci. 2014;8:59. doi:10.3389/fnbeh.2014.00059
  • Lo JC, Groeger JA, Santhi N, et al. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS One. 2012;7(9):e45987. doi:10.1371/journal.pone.0045987
  • Slama H, Chylinski DO, Deliens G, Leproult R, Schmitz R, Peigneux P. Sleep deprivation triggers cognitive control impairments in task-goal switching. Sleep. 2017;41(2):zsx200.
  • Frenda SJ, Fenn KM. Sleep less, think worse: the effect of sleep deprivation on working memory. J Appl Res Mem Cogn. 2016;5:463–469. doi:10.1016/j.jarmac.2016.10.001
  • Sauvet F, Arnal PJ, Tardo-Dino PE, et al. Beneficial effects of exercise training on cognitive performances during total sleep deprivation in healthy subjects. Sleep Med. 2020;65:26–35. doi:10.1016/j.sleep.2019.07.007
  • Killgore WD, Kahn-Greene ET, Grugle NL, Killgore DB, Balkin TJ. Sustaining executive functions during sleep deprivation: a comparison of caffeine, dextroamphetamine, and modafinil. Sleep. 2009;32(2):205–216. doi:10.1093/sleep/32.2.205
  • Wesensten NJ, Killgore WD, Balkin TJ. Performance and alertness effects of caffeine, dextroamphetamine, and modafinil during sleep deprivation. J Sleep Res. 2005;14(3):255–266. doi:10.1111/j.1365-2869.2005.00468.x
  • Wyatt JK, Cajochen C, Ritz-de Cecco A, Czeisler CA, Dijk DJ. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep. 2004;27(3):374–381. doi:10.1093/sleep/27.3.374
  • Ward AM, McLaren DG, Schultz AP, et al. Daytime sleepiness is associated with decreased default mode network connectivity in both young and cognitively intact elderly subjects. Sleep. 2013;36(11):1609–1615. doi:10.5665/sleep.3108
  • Stawarczyk D, D’Argembeau A. Conjoint influence of mind-wandering and sleepiness on task performance. J Exp Psychol Hum Percept Perform. 2016;42(10):1587–1600. doi:10.1037/xhp0000254
  • Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;16(12):584–592. doi:10.1016/j.tics.2012.10.008
  • Andrews-Hanna JR. The brain’s default network and its adaptive role in internal mentation. Neuroscientist. 2012;18(3):251–270. doi:10.1177/1073858411403316
  • Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506. doi:10.1016/j.tics.2011.08.003
  • Xu H, Shen H, Wang L, et al. Impact of 36h of total sleep deprivation on resting-state dynamic functional connectivity. Brain Res. 2018;1688:22–32. doi:10.1016/j.brainres.2017.11.011
  • Cajochen C, Wyatt JK, Czeisler CA, Dijk DJ. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience. 2002;114(4):1047–1060. doi:10.1016/S0306-4522(02)00209-9
  • van Son D, de Rover M, De Blasio FM, van der Does W, Barry RJ, Putman P. Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Ann N Y Acad Sci. 2019;1452(1):52–64. doi:10.1111/nyas.14180
  • Chang D, Song D, Zhang J, Shang Y, Ge Q, Wang Z. Caffeine caused a widespread increase of resting brain entropy. Sci Rep. 2018;8(1):2700. doi:10.1038/s41598-018-21008-6
  • Retey JV, Adam M, Gottselig JM, et al. Adenosinergic mechanisms contribute to individual differences in sleep deprivation-induced changes in neurobehavioral function and brain rhythmic activity. J Neurosci. 2006;26(41):10472–10479. doi:10.1523/JNEUROSCI.1538-06.2006
  • Borragan G, Slama H, Bartolomei M, Peigneux P. Cognitive fatigue: a time-based resource-sharing account. Cortex. 2017;89:71–84. doi:10.1016/j.cortex.2017.01.023
  • Kato Y, Endo H, Kizuka T. Mental fatigue and impaired response processes: event-related brain potentials in a Go/NoGo task. Int J Psychophysiol. 2009;72(2):204–211. doi:10.1016/j.ijpsycho.2008.12.008
  • van der Linden D, Eling P. Mental fatigue disturbs local processing more than global processing. Psychol Res. 2006;70(5):395–402. doi:10.1007/s00426-005-0228-7
  • Drummond SP, Brown GG, Salamat JS, Gillin JC. Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep. 2004;27(3):445–451.
  • Drummond SP, Meloy MJ, Yanagi MA, Orff HJ, Brown GG. Compensatory recruitment after sleep deprivation and the relationship with performance. Psychiatry Res. 2005;140(3):211–223. doi:10.1016/j.pscychresns.2005.06.007
  • de Morree HM, Klein C, Marcora SM. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J Appl Physiol. 2014;117(12):1514–1523. doi:10.1152/japplphysiol.00898.2013
  • Luque-Casado A, Perakakis P, Ciria LF, Sanabria D. Transient autonomic responses during sustained attention in high and low fit young adults. Sci Rep. 2016;6:27556. doi:10.1038/srep27556