227
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Altered Functional Connectivity and Topological Organization of Brain Networks Correlate to Cognitive Impairments After Sleep Deprivation

ORCID Icon, ORCID Icon, , &
Pages 1285-1297 | Published online: 15 Jul 2022

References

  • Bixler E. Sleep and society: an epidemiological perspective. Sleep Med. 2009;10(Suppl 1):S3–S6. doi:10.1016/j.sleep.2009.07.005
  • Schoenborn CA, Adams PE. Health behaviors of adults: United States, 2005–2007. Vital Health Stat Series 10. 2010;245:1–132.
  • Philip P, Akerstedt T. Transport and industrial safety, how are they affected by sleepiness and sleep restriction? Sleep Med Rev. 2006;10(5):347–356. doi:10.1016/j.smrv.2006.04.002
  • Liew SC, Aung T. Sleep deprivation and its association with diseases- a review. Sleep Med. 2021;77:192–204. doi:10.1016/j.sleep.2020.07.048
  • Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 2011;8(8):665–670. doi:10.1038/nmeth.1635
  • Lowe CJ, Safati A, Hall PA. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci Biobehav Rev. 2017;80:586–604. doi:10.1016/j.neubiorev.2017.07.010
  • Chee MW, Chuah LY. Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Curr Opin Neurol. 2008;21(4):417–423. doi:10.1097/WCO.0b013e3283052cf7
  • Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100(1):253–258. doi:10.1073/pnas.0135058100
  • Verweij IM, Romeijn N, Smit DJ, Piantoni G, Van Someren EJ. Sleep deprivation leads to a loss of functional connectivity in frontal brain regions. BMC Neurosci. 2014;15:88. doi:10.1186/1471-2202-15-88
  • Mu Q, Nahas Z, Johnson KA, et al. Decreased cortical response to verbal working memory following sleep deprivation. Sleep. 2005;28(1):55–67. doi:10.1093/sleep/28.1.55
  • De Havas JA, Parimal S, Soon CS, Chee MW. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage. 2012;59(2):1745–1751. doi:10.1016/j.neuroimage.2011.08.026
  • Dai C, Zhang Y, Cai X, et al. Effects of sleep deprivation on working memory: change in functional connectivity between the dorsal attention, default mode, and fronto-parietal networks. Front Hum Neurosci. 2020;14:360. doi:10.3389/fnhum.2020.00360
  • Buckner RL. The serendipitous discovery of the brain’s default network. Neuroimage. 2012;62(2):1137–1145. doi:10.1016/j.neuroimage.2011.10.035
  • Bailey SK, Aboud KS, Nguyen TQ, Cutting LE. Applying a network framework to the neurobiology of reading and dyslexia. J Neurodev Disord. 2018;10(1):37. doi:10.1186/s11689-018-9251-z
  • Bell PT, Shine JM. Estimating large-scale network convergence in the human functional connectome. Brain Connect. 2015;5(9):565–574. doi:10.1089/brain.2015.0348
  • Scolari M, Seidl-Rathkopf KN, Kastner S. Functions of the human frontoparietal attention network: evidence from neuroimaging. Curr Opin Behav Sci. 2015;1:32–39. doi:10.1016/j.cobeha.2014.08.003
  • Zhao R, Zhang X, Zhu Y, et al. Disrupted resting-state functional connectivity in hippocampal subregions after sleep deprivation. Neuroscience. 2019;398:37–54. doi:10.1016/j.neuroscience.2018.11.049
  • Chen WH, Chen J, Lin X, et al. Dissociable effects of sleep deprivation on functional connectivity in the dorsal and ventral default mode networks. Sleep Med. 2018;50:137–144. doi:10.1016/j.sleep.2018.05.040
  • Yeo BT, Tandi J, Chee MW. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation. Neuroimage. 2015;111:147–158. doi:10.1016/j.neuroimage.2015.02.018
  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–9678. doi:10.1073/pnas.0504136102
  • Bondy JA, Murty USR. Graph Theory. Springer; 2008. ISBN 978-1-84628-969-9.
  • Sporns O. Graph theory methods: applications in brain networks. Dialogues Clin Neurosci. 2018;20(2):111–121. doi:10.31887/DCNS.2018.20.2/osporns
  • Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–198. doi:10.1038/nrn2575
  • Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist. 2017;23(5):499–516. doi:10.1177/1073858416667720
  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8(9):418–425. doi:10.1016/j.tics.2004.07.008
  • Strogatz SH. Exploring complex networks. Nature. 2001;410(6825):268–276. doi:10.1038/35065725
  • Tan B, Kong X, Yang P, Jin Z, Li L. The difference of brain functional connectivity between eyes-closed and eyes-open using graph theoretical analysis. Comput Math Methods Med. 2013;2013:976365. doi:10.1155/2013/976365
  • Miraglia F, Tomino C, Vecchio F, Gorgoni M, De Gennaro L, Rossini PM. The brain network organization during sleep onset after deprivation. Clin Neurophysiol. 2021;132(1):36–44. doi:10.1016/j.clinph.2020.10.016
  • Pesoli M, Rucco R, Liparoti M, et al. A night of sleep deprivation alters brain connectivity and affects specific executive functions. Neurol Sci. 2022;43(2):1025–1034. doi:10.1007/s10072-021-05437-2
  • Liu H, Li H, Wang Y, Lei X. Enhanced brain small-worldness after sleep deprivation: a compensatory effect. J Sleep Res. 2014;23(5):554–563. doi:10.1111/jsr.12147
  • Cheng Y, Wu W, Wang J, Feng W, Wu X, Li C. Clinical research Reliability and validity of the repeatable battery for the assessment of neuropsychological status in community-dwelling elderly. Arch Med Sci. 2011;7(5):850–857. doi:10.5114/aoms.2011.25561
  • Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & analysis for (Resting-State) brain imaging. Neuroinformatics. 2016;14(3):339–351. doi:10.1007/s12021-016-9299-4
  • Li L, Su YA, Wu YK, et al. Eight-week antidepressant treatment reduces functional connectivity in first-episode drug-naive patients with major depressive disorder. Hum Brain Mapp. 2021;42(8):2593–2605. doi:10.1002/hbm.25391
  • Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–1320. doi:10.1109/TMI.2010.2046908
  • Klein A, Ghosh SS, Bao FS, et al. Mindboggling morphometry of human brains. PLoS Comput Biol. 2017;13(2):e1005350. doi:10.1371/journal.pcbi.1005350
  • Esteban O, Markiewicz CJ, Blair RW, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16(1):111–116. doi:10.1038/s41592-018-0235-4
  • Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science. 2010;329(5997):1358–1361. doi:10.1126/science.1194144
  • Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–1165. doi:10.1152/jn.00338.2011
  • Krause AJ, Simon EB, Mander BA, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18(7):404–418. doi:10.1038/nrn.2017.55
  • Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506. doi:10.1016/j.tics.2011.08.003
  • Hutton JS, Dudley J, Horowitz-Kraus T, DeWitt T, Holland SK. Functional connectivity of attention, visual, and language networks during audio, illustrated, and animated stories in preschool-age children. Brain Connect. 2019;9(7):580–592. doi:10.1089/brain.2019.0679
  • Zhou X, Wu T, Yu J, Lei X. Sleep deprivation makes the young brain resemble the elderly brain: a large-scale brain networks study. Brain Connect. 2017;7(1):58–68. doi:10.1089/brain.2016.0452
  • Zhu W, Chen Q, Xia L, et al. Common and distinct brain networks underlying verbal and visual creativity. Hum Brain Mapp. 2017;38(4):2094–2111. doi:10.1002/hbm.23507
  • Velluti RA. Interactions between sleep and sensory physiology. J Sleep Res. 1997;6(2):61–77. doi:10.1046/j.1365-2869.1997.00031.x
  • Tian Y, Xie C, Lei X. Isolation of subjectively reported sleepiness and objectively measured vigilance during sleep deprivation: a resting-state fMRI study. Cogn Neurodyn. 2022. doi:10.1007/s11571-021-09772-0
  • Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–324. doi:10.1016/j.neuron.2008.04.017
  • Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA. 2006;103(26):10046–10051. doi:10.1073/pnas.0604187103
  • McMains S, Kastner S. Interactions of top-down and bottom-up mechanisms in human visual cortex. J Neurosci. 2011;31(2):587–597. doi:10.1523/JNEUROSCI.3766-10.2011
  • Wen X, Yao L, Liu Y, Ding M. Causal interactions in attention networks predict behavioral performance. J Neurosci. 2012;32(4):1284–1292. doi:10.1523/JNEUROSCI.2817-11.2012
  • Gevers W, Deliens G, Hoffmann S, Notebaert W, Peigneux P. Sleep deprivation selectively disrupts top-down adaptation to cognitive conflict in the Stroop test. J Sleep Res. 2015;24(6):666–672. doi:10.1111/jsr.12320
  • Yang H, Chen X, Chen ZB, et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder. Mol Psychiatry. 2021;26(12):7363–7371. doi:10.1038/s41380-021-01247-2
  • Lu FM, Dai J, Couto TA, et al. Diffusion tensor imaging tractography reveals disrupted white matter structural connectivity network in healthy adults with insomnia symptoms. Front Hum Neurosci. 2017;11:583. doi:10.3389/fnhum.2017.00583
  • Ning Y, Fang M, Zhang Y, et al. Attention performance correlated with white matter structural brain networks in shift work disorder. Front Psychiatry. 2021;12:802830. doi:10.3389/fpsyt.2021.802830
  • Hudson AN, Van Dongen HPA, Honn KA. Sleep deprivation, vigilant attention, and brain function: a review. Neuropsychopharmacology. 2020;45(1):21–30. doi:10.1038/s41386-019-0432-6
  • Coalson TS, Van Essen DC, Glasser MF. The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc Natl Acad Sci USA. 2018;115(27):E6356–E6365. doi:10.1073/pnas.1801582115
  • Birn RM, Molloy EK, Patriat R, et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage. 2013;83:550–558. doi:10.1016/j.neuroimage.2013.05.099
  • Laumann TO, Gordon EM, Adeyemo B, et al. Functional system and areal organization of a highly sampled individual human brain. Neuron. 2015;87(3):657–670. doi:10.1016/j.neuron.2015.06.037