42
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Machine Learning Model for Predicting Sleep and Wakefulness Based on Accelerometry, Skin Temperature and Contextual Information

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 699-710 | Received 15 Dec 2023, Accepted 02 May 2024, Published online: 05 Jun 2024

References

  • Van de Water AT, Holmes A, Hurley DA. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography: a systematic review. J Sleep Res. 2011;20(1 Pt 2):183–200. doi:10.1111/j.1365-2869.2009.00814.x
  • Willetts M, Hollowell S, Aslett L, Holmes C, Doherty A. Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants. Sci Rep. 2018;8(1):7961. doi:10.1038/s41598-018-26174-1
  • Su S, Li X, Xu Y, McCall WV, Wang X. Epidemiology of accelerometer-based sleep parameters in US school-aged children and adults: NHANES 2011-2014. Sci Rep. 2022;12(1):7680. doi:10.1038/s41598-022-11848-8
  • Albers JD, Meertens RM, Savelberg H, et al. Both short and long sleep durations are associated with type 2 diabetes, independent from traditional lifestyle risk factors-The Maastricht Study. Sleep Health. 2023;9(5):733–741. doi:10.1016/j.sleh.2023.06.009
  • de Paula D, Crochemore-Silva I, Griep RH, Duncan BB, Schmidt MI. Accelerometry measured movement behaviors in middle-aged and older adults: cross-sectional analysis of the ELSA-Brasil Study. J Phys Act Health. 2023;1–10. doi:10.1123/jpah.2023-0106
  • Sansom K, Reynolds A, McVeigh J, et al. Estimating sleep duration: performance of open-source processing of actigraphy compared to in-laboratory polysomnography in the community. SLEEP Adv. 2023;4(1):zpad028. doi:10.1093/sleepadvances/zpad028
  • Plekhanova T, Rowlands AV, Davies MJ, Hall AP, Yates T, Edwardson CL. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands. J Sleep Res. 2023;32(3):e13760. doi:10.1111/jsr.13760
  • Chase JD, Busa MA, Staudenmayer JW, Sirard JR. Sleep measurement using wrist-worn accelerometer data compared with polysomnography. Sensors. 2022;22(13):5041. doi:10.3390/s22135041
  • Walch O, Huang Y, Forger D, Goldstein C. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Sleep. 2019;42(12):zsz180. doi:10.1093/sleep/zsz180
  • Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data. Chronobiol. Int. 2019;36(12):1752–1760. doi:10.1080/07420528.2019.1679826
  • Yuan H, Plekhanova T, Walmsley R, et al. Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality. medRxiv. 2023. doi:10.1101/2023.07.07.23292251
  • Altini M, Kinnunen H. The promise of sleep: a multi-sensor approach for accurate sleep stage detection using the Oura ring. Sensors. 2021;21(13):4302. doi:10.3390/s21134302
  • Raymann RJ, Swaab DF, Van Someren EJ. Skin temperature and sleep-onset latency: changes with age and insomnia. Physiol Behav. 2007;90(2–3):257–266. doi:10.1016/j.physbeh.2006.09.008
  • Szymusiak R. Body temperature and sleep. Handbook Clin Neurol. 2018;156:341–351. doi:10.1016/b978-0-444-63912-7.00020-5
  • Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Functional link between distal vasodilation and sleep-onset latency? Am J Physiol Regul Integr Comp Physiol. 2000;278(3):R741–8. doi:10.1152/ajpregu.2000.278.3.R741
  • Kelly RM, McDermott JH, Coogan AN. Differences in sleep offset timing between weekdays and weekends in 79,161 adult participants in the UK Biobank. Clocks & Sleep. 2022;4(4):658–674. doi:10.3390/clockssleep4040050
  • Mattingly SM, Grover T, Martinez GJ, et al. The effects of seasons and weather on sleep patterns measured through longitudinal multimodal sensing. NJP Digit Med. 2021;4(1):76. doi:10.1038/s41746-021-00435-2
  • Bach K, Kongsvold A, Bårdstu HB, et al. A machine learning classifier for detection of physical activity types and postures during free-living. J Meas Phys Behav. 2022;5:24–31. doi:10.1123/jmpb.2021-0015
  • Logacjov A, Bach K, Kongsvold A, Bårdstu HB, Mork PJ. HARTH: a human activity recognition dataset for machine learning. Sensors. 2021;21(23):7853. doi:10.3390/s21237853
  • Oppenheim AV, Schafer RW, Buck JR, Buck JR, Schafer RW. Discrete-time signal processing. In: Prentice-Hall Signal Processing Series. 2nd ed. Prentice Hall; 1999.
  • Berry RB, Brooks R, Gamaldo C, et al. AASM Scoring Manual Updates for 2017 (Version 2.4). J Clin Sleep Med. 2017;13(5):665–666. doi:10.5664/jcsm.6576
  • Wang H, Wang S, Yu W, Lei X. Consistency of chronotype measurements is affected by sleep quality, gender, longitude, and latitude. Chronobiol Int. 2023;40(7):952–960. doi:10.1080/07420528.2023.2237118
  • Zhai Z, Liu X, Zhang H, et al. Associations of midpoint of sleep and night sleep duration with type 2 diabetes mellitus in Chinese rural population: the Henan rural cohort study. BMC Public Health. 2021;21(1):879. doi:10.1186/s12889-021-10833-6
  • Fekedulegn D, Andrew ME, Shi M, Violanti JM, Knox S, Innes KE. Actigraphy-based assessment of sleep parameters. Ann. Work Exposures Health. 2020;64(4):350–367. doi:10.1093/annweh/wxaa007
  • Refinetti R. Chronotype variability and patterns of light exposure of a large cohort of United States residents. Yale J Biol Med. 2019;92(2):179–186.
  • Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995;20(3):273–297. doi:10.1007/BF00994018
  • Bland JM, Altman DG. Measuring agreement in method comparison studies. Statistical Methods Med Res. 1999;8(2):135–160. doi:10.1177/096228029900800204
  • Krouwer JS. Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med. 2008;27(5):778–780. doi:10.1002/sim.3086
  • Johansson PJ, Crowley P, Axelsson J, et al. Development and performance of a sleep estimation algorithm using a single accelerometer placed on the thigh: an evaluation against polysomnography. J Sleep Res. 2023;32(2):e13725. doi:10.1111/jsr.13725
  • Zinkhan M, Berger K, Hense S, et al. Agreement of different methods for assessing sleep characteristics: a comparison of two actigraphs, wrist and Hip placement, and self-report with polysomnography. Sleep Medicine. 2014;15(9):1107–1114. doi:10.1016/j.sleep.2014.04.015
  • Slater JA, Botsis T, Walsh J, King S, Straker LM, Eastwood PR. Assessing sleep using Hip and wrist actigraphy. Sleep Biol Rhythms. 2015;13(2):172–180. doi:10.1111/sbr.12103
  • Matsuo M, Masuda F, Sumi Y, et al. Comparisons of portable sleep monitors of different modalities: potential as naturalistic sleep recorders. Technol Rep Front Neurol. 2016;7:110. doi:10.3389/fneur.2016.00110
  • Chao K, Fry B, Rajput KS, Selvaraj N. Influence of study composition on the efficacy of sleep detection using actigraphy. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:7530–7534. doi:10.1109/embc46164.2021.9630977
  • Sundararajan K, Georgievska S, Te Lindert BHW, et al. Sleep classification from wrist-worn accelerometer data using random forests. Sci Rep. 2021;11(1):24. doi:10.1038/s41598-020-79217-x
  • Rosenberger ME, Fulton JE, Buman MP, et al. The 24-hour activity cycle: a new paradigm for physical activity. Med Sci Sports Exerc. 2019;51(3):454–464. doi:10.1249/mss.0000000000001811
  • Conley S, Knies A, Batten J, et al. Agreement between actigraphic and polysomnographic measures of sleep in adults with and without chronic conditions: a systematic review and meta-analysis. Sleep Med Rev. 2019;46:151–160. doi:10.1016/j.smrv.2019.05.001
  • Reed DL, Sacco WP. Measuring sleep efficiency: what should the denominator be? J Clin Sleep Med. 2016;12(2):263–266. doi:10.5664/jcsm.5498