105
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The frequency of non-pathologically thin corneas in young healthy adults

, &
Pages 1123-1135 | Published online: 09 Jul 2019

References

  • Cavanagh HD, Ladage PM, Li SL, et al. Effects of daily and overnight wear of a novel hyper oxygen-transmissible soft contact lens on bacterial binding and corneal epithelium. Ophthalmology. 2002;109:1957–1969.
  • Ladage PM, Yamamoto K, Ren DH, et al. Effects of rigid and soft contact lens daily wear on corneal epithelium, tear lactate dehydrogenase, and bacterial binding to exfoliated epithelial cells. Ophthalmology. 2001;108:1279–1288.
  • Hashemi H, Asgari S, Emamian MH, Mehravaran S, Fotouhi A. Five year changes in central and peripheral corneal thickness: the shahroud eye cohort study. Cont Lens Anterior Eye. 2016;39(5):331–335. doi:10.1016/j.clae.2016.05.004
  • Rosenberg ME, Tervo TM, Immonen IJ, Muller LJ, Gronhagen-Riska C, Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41(10):2915–2921.
  • Deinema LA, Vingrys AJ, Chinnery HR, Downie LE. Optical coherence tomography reveals changes to corneal reflectivity and thickness in individuals with tear hyperosmolarity. Transl Vis Sci Technol. 2017;6(3):6. doi:10.1167/tvst.6.3.6
  • Villani E, Galimberti D, Viola F, Mapelli C, Ratiglia R. The cornea in Sjogren’s syndrome: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2007;48(5):2017–2022. doi:10.1167/iovs.06-1129
  • Pircher N, Schwarzhans F, Holzer S, et al. Distinguishing keratoconic eyes and healthy eyes using ultrahigh-resolution optical coherence tomography-based corneal epithelium thickness mapping. Am J Ophthalmol. 2018;189:47–54. doi:10.1016/j.ajo.2018.02.006
  • Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119(12):2425–2433. doi:10.1016/j.ophtha.2012.06.023
  • Li Y, Meisler DM, Tang M, et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology. 2008;115(12):2159–2166. doi:10.1016/j.ophtha.2008.08.004
  • Sng CC, Ang M, Barton K. Central corneal thickness in glaucoma. Curr Opin Ophthalmol. 2017;28(2):120–126. doi:10.1097/ICU.0000000000000335
  • Temstet C, Sandali O, Bouheraoua N, et al. Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg. 2015;41(4):812–820. doi:10.1016/j.jcrs.2014.06.043
  • Li Y, Netto MV, Shekhar R, Krueger RR, Huang D. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Ophthalmology. 2007;114(6):1124–1132. doi:10.1016/j.ophtha.2006.09.031
  • Fogagnolo P, Rossetti L, Mazzolani F, Orzalesi N. Circadian variations in central corneal thickness and intraocular pressure in patients with glaucoma. Br J Ophthalmol. 2006;90(1):24–28. doi:10.1136/bjo.2005.079285
  • Hashmani N, Hashmani S, Saad CM. Wide corneal epithelial mapping using an optical coherence tomography. Invest Ophthalmol Vis Sci. 2018;59(3):1652–1658. doi:10.1167/iovs.17-23717
  • Inomata T, Mashaghi A, Hong J, Nakao T, Dana R. Scaling and maintenance of corneal thickness during aging. PLoS One. 2017;12(10):e0185694. doi:10.1371/journal.pone.0185694
  • Yang Y, Hong J, Deng SX, Xu J. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(8):5032–5038. doi:10.1167/iovs.13-13831
  • Batawi H, Lollett IV, Maliakal C, et al. A comparative study of central corneal epithelial, stromal, and total thickness in males with and without primary open-angle glaucoma. Cornea. 2018;37(6):712–719. doi:10.1097/ICO.0000000000001575
  • Kim BJ, Ryu IH, Lee JH, Kim SW. Correlation of Sex and myopia with corneal epithelial and stromal thicknesses. Cornea. 2016;35(8):1078–1083. doi:10.1097/ICO.0000000000000850
  • Wang X, Dong J, Wu Q. Corneal thickness, epithelial thickness and axial length differences in normal and high myopia. BMC Ophthalmol. 2015;15:49. doi:10.1186/s12886-015-0039-6
  • Samy MM, Shaaban YM, Badran TAF. Age- and sex-related differences in corneal epithelial thickness measured with spectral domain anterior segment optical coherence tomography among Egyptians. Medicine. 2017;96(42):e8314. doi:10.1097/MD.0000000000008314
  • Kim BJ, Ryu IH, Kim SW. Age-related differences in corneal epithelial thickness measurements with anterior segment optical coherence tomography. Jpn J Ophthalmol. 2016;60(5):357–364. doi:10.1007/s10384-016-0457-x
  • Karaca Adiyeke S, Karaca I, Yildirim S, Adiyeke M, Uyar I, Ture G. Anterior segment findings in women with polycystic ovary syndrome. Turk J Ophthalmol. 2017;47(1):24–27. doi:10.4274/tjo.73659
  • Baser H, Cuhaci N, Topaloglu O, et al. Is there any association between primary hyperparathyroidism and ocular changes, such as central corneal thickness, retinal thickness, and intraocular pressure? Endocrine. 2016;51(3):545–550. doi:10.1007/s12020-015-0724-5
  • Prospero Ponce CM, Rocha KM, Smith SD, Krueger RR. Central and peripheral corneal thickness measured with optical coherence tomography, scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes. J Cataract Refract Surg. 2009;35(6):1055–1062. doi:10.1016/j.jcrs.2009.01.022
  • Guilbert E, Saad A, Grise-Dulac A, Gatinel D. Corneal thickness, curvature, and elevation readings in normal corneas: combined placido-scheimpflug system versus combined placido-scanning-slit system. J Cataract Refract Surg. 2012;38(7):1198–1206. doi:10.1016/j.jcrs.2012.01.033
  • Gonzalez-Perez J, Queiruga Pineiro J, Sanchez Garcia A, Gonzalez Meijome JM. Comparison of central corneal thickness measured by standard ultrasound pachymetry, corneal topography, tono-pachymetry and anterior segment optical coherence tomography. Curr Eye Res. 2018 Jul;43(7):866–872.
  • Li HF, Petroll WM, Moller-Pedersen T, Maurer JK, Cavanagh HD, Jester JV. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res. 1997;16(3):214–221.
  • Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Stromal thickness in the normal cornea: three-dimensional display with artemis very high-frequency digital ultrasound. J Refractive Surg. 2009;25(9):776–786. doi:10.3928/1081597X-20090813-04
  • Ruiz-Mesa R, Abengozar-Vela A, Ruiz-Santos M. Comparison of a new scheimpflug imaging combined with partial coherence interferometry biometer and a low-coherence reflectometry biometer. J Cataract Refract Surg. 2017;43(11):1406–1412. doi:10.1016/j.jcrs.2017.08.016
  • Maldonado MJ, Ruiz-Oblitas L, Munuera JM, Aliseda D, Garcia-Layana A, Moreno-Montanes J. Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Ophthalmology. 2000;107(1):81–87. discussion 88.
  • Moller-Pedersen T, Vogel M, Li HF, Petroll WM, Cavanagh HD, Jester JV. Quantification of stromal thinning, epithelial thickness, and corneal haze after photorefractive keratectomy using in vivo confocal microscopy. Ophthalmology. 1997;104(3):360–368.
  • Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high-speed optical coherence tomography. Ophthalmology. 2006;113(5):792–799.e792. doi:10.1016/j.ophtha.2006.01.048
  • Cheng AC, Rao SK, Lau S, Leung CK, Lam DS. Central corneal thickness measurements by ultrasound, orbscan II, and visante OCT after LASIK for myopia. J Refractive Surg. 2008;24(4):361–365. doi:10.3928/1081597X-20080401-08
  • Mohamed S, Lee GK, Rao SK, et al. Repeatability and reproducibility of pachymetric mapping with Visante anterior segment-optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48(12):5499–5504. doi:10.1167/iovs.07-0591
  • Francoz M, Karamoko I, Baudouin C, Labbe A. Ocular surface epithelial thickness evaluation with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(12):9116–9123. doi:10.1167/iovs.11-7988
  • Rio-Cristobal A, Martin R. Corneal assessment technologies: current status. Surv Ophthalmol. 2014;59(6):599–614. doi:10.1016/j.survophthal.2014.05.001
  • Lee YW, Choi CY, Yoon GY. Comparison of dual rotating scheimpflug-placido, swept-source optical coherence tomography, and Placido-scanning-slit systems. J Cataract Refract Surg. 2015;41(5):1018–1029. doi:10.1016/j.jcrs.2014.08.040
  • Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–1589.
  • Lim SH. Clinical applications of anterior segment optical coherence tomography. J Ophthalmol. 2015;2015:605729. doi:10.1155/2015/605729
  • Ang M, Baskaran M, Werkmeister RM, et al. Anterior segment optical coherence tomography. Prog Retin Eye Res. 2018. doi:10.1016/j.preteyeres.2018.04.002
  • Prakash G, Agarwal A, Jacob S, Kumar DA, Agarwal A, Banerjee R. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Am J Ophthalmol. 2009;148(2):282–290.e282. doi:10.1016/j.ajo.2009.03.012
  • Galgauskas S, Juodkaite G, Tutkuviene J. Age-related changes in central corneal thickness in normal eyes among the adult Lithuanian population. Clin Interv Aging. 2014;9:1145–1151. doi:10.2147/CIA.S61790
  • Rush SW, Matulich J, Biskup J, Cofoid P, Rush RB. Corneal epithelial thickness measured by manual electronic caliper spectral domain optical coherence tomography: distributions and demographic correlations in preoperative refractive surgery patients. Asia Pac J Ophthalmol. 2016;5(2):147–150. doi:10.1097/APO.0000000000000166
  • Vijaya L, George R, Arvind H, et al. Central corneal thickness in adult south indians: the chennai glaucoma study. Ophthalmology. 2010;117(4):700–704. doi:10.1016/j.ophtha.2009.09.025
  • Ul Hassan M, Ur Rehman A, Abbas M, Fawad U, Bhatti N, Daud A. Relationship between central corneal thickness and intraocular pressure in selected Pakistani population. Pak J Ophthalmol. 2010;26(2):79–82.
  • Sanchis-Gimeno JA, Alonso L, Rahhal SM, Martinez-Soriano F. Gender differences in corneal thickness values. Eur J Anat. 2004;8(2):67–70.
  • Vollmer L, Sowka J, Pizzimenti J, Yu X. Central corneal thickness measurements obtained with anterior segment spectral domain optical coherence tomography compared to ultrasound pachymetry in healthy subjects. Optometry. 2012;83(5):167–172.
  • Erdur SK, Demirci G, Dikkaya F, Kocabora MS, Ozsutcu M. Comparison of central corneal thickness with ultrasound pachymetry, noncontact specular microscopy and spectral domain optical coherence tomography. Semin Ophthalmol. 2018;33(6):782–787. doi:10.1080/08820538.2018.1448091
  • Holden BA, Sweeney DF, Vannas A, Nilsson KT, Efron N. Effects of long-term extended contact lens wear on the human cornea. Invest Ophthalmol Vis Sci. 1985;26(11):1489–1501.
  • Aghaian E, Choe JE, Lin S, Stamper RL. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology. 2004;111(12):2211–2219. doi:10.1016/j.ophtha.2004.06.013
  • La Rosa FA, Gross RL, Orengo-Nania S. Central corneal thickness of Caucasians and African Americans in glaucomatous and nonglaucomatous populations. Arch Ophthalmol. 2001;119(1):23–27.
  • Mimouni M, Flores V, Shapira Y, et al. Correlation between central corneal thickness and myopia. Int Ophthalmol. 2018; 38(6): 2547–2551.
  • Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with artemis very high-frequency digital ultrasound. J Refractive Surg. 2008;24(6):571–581. doi:10.3928/1081597X-20080601-05
  • Heur M, Costin B, Crowe S, et al. The value of keratometry and central corneal thickness measurements in the clinical diagnosis of marfan syndrome. Am J Ophthalmol. 2008;145(6):997–1001. doi:10.1016/j.ajo.2008.01.028
  • Giacomoni PU, Mammone T, Teri M. Gender-linked differences in human skin. J Dermatol Sci. 2009;55(3):144–149. doi:10.1016/j.jdermsci.2009.06.001
  • Sandby-Moller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 2003;83(6):410–413. doi:10.1080/00015550310015419
  • McKay TB, Hjortdal J, Sejersen H, Asara JM, Wu J, Karamichos D. Endocrine and metabolic pathways linked to keratoconus: implications for the role of hormones in the stromal microenvironment. Sci Rep. 2016;6:25534. doi:10.1038/srep25534
  • Taichman et al. Data Sharing Statements for Clinical Trials – A Requirement of the International Committee of Medical Journal Editors. N Engl J Med. 2017;376:2277–2279.