260
Views
23
CrossRef citations to date
0
Altmetric
Review

Blood Biomarkers of Uveal Melanoma: Current Perspectives

, , , , , , ORCID Icon & show all
Pages 157-169 | Published online: 20 Jan 2020

References

  • Zimmerman LE, McLean IW, Foster WD. Does enucleation of the eye containing a malignant melanoma prevent or accelerate the dissemination of tumour cells. Br J Ophthalmol. 1978;62(6):420–425. doi:10.1136/bjo.62.6.420
  • Damato B, Duke C, Coupland SE, et al. Cytogenetics of uveal melanoma: a 7-year clinical experience. Ophthalmology. 2007;114(10):1925–1931. doi:10.1016/j.ophtha.2007.06.012
  • Shields CL, Ganguly A, Materin MA, et al. Chromosome 3 analysis of uveal melanoma using fine-needle aspiration biopsy at the time of plaque radiotherapy in 140 consecutive cases. Trans Am Ophthalmol Soc. 2007;105:43–52; discussion 52–43.
  • Damato B, Dopierala JA, Coupland SE. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin Cancer Res. 2010;16(24):6083–6092. doi:10.1158/1078-0432.CCR-10-2076
  • Field MG, Harbour JW. Recent developments in prognostic and predictive testing in uveal melanoma. Curr Opin Ophthalmol. 2014;25(3):234–239. doi:10.1097/ICU.0000000000000051
  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–466. doi:10.1097/COH.0b013e32833ed177
  • Gombos DS, Van Quill KR, Uusitalo M, O’Brien JM. Geographic disparities in diagnostic screening for metastatic uveal melanoma. Ophthalmology. 2004;111(12):2254–2258. doi:10.1016/j.ophtha.2004.06.022
  • Donoso LA, Berd D, Augsburger JJ, Mastrangelo MJ, Shields JA. Metastatic uveal melanoma. Pretherapy serum liver enzyme and liver scan abnormalities. Arch Ophthalmol. 1985;103(6):796–798. doi:10.1001/archopht.1985.01050060056024
  • Eskelin S, Pyrhonen S, Summanen P, Prause JU, Kivela T. Screening for metastatic malignant melanoma of the uvea revisited. Cancer. 1999;85(5):1151–1159. doi:10.1002/(SICI)1097-0142(19990301)85:5<1151::AID-CNCR20>3.0.CO;2-G
  • Mafee MF. Uveal melanoma, choroidal hemangioma, and simulating lesions. Role of MR imaging. Radiol Clin North Am. 1998;36(6):1083–1099, x. doi:10.1016/S0033-8389(05)70233-5
  • Damato B. Developments in the management of uveal melanoma. Clin Experiment Ophthalmol. 2004;32(6):639–647. doi:10.1111/ceo.2004.32.issue-6
  • Diener-West M, Reynolds SM, Agugliaro DJ, et al. Screening for metastasis from choroidal melanoma: the collaborative ocular melanoma study group report 23. J Clin Oncol. 2004;22(12):2438–2444. doi:10.1200/JCO.2004.08.194
  • Einhorn LH, Burgess MA, Gottlieb JA. Metastatic patterns of choroidal melanoma. Cancer. 1974;34(4):1001–1004. doi:10.1002/(ISSN)1097-0142
  • Hicks C, Foss AJ, Hungerford JL. Predictive power of screening tests for metastasis in uveal melanoma. Eye. 1998;12(Pt 6):945–948. doi:10.1038/eye.1998.245
  • Eskelin S, Pyrhonen S, Summanen P, Hahka-Kemppinen M, Kivela T. Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. Ophthalmology. 2000;107(8):1443–1449. doi:10.1016/S0161-6420(00)00182-2
  • Kaiserman I, Amer R, Pe’er J. Liver function tests in metastatic uveal melanoma. Am J Ophthalmol. 2004;137(2):236–243. doi:10.1016/j.ajo.2003.08.045
  • Wollina U, Karte K, Hipler UC, Knoll B, Kirsch K, Herold C. Serum protein s100beta in patients with malignant melanoma detected by an immunoluminometric assay. J Cancer Res Clin Oncol. 2000;126(2):107–110. doi:10.1007/s004320050018
  • Guo HB, Stoffel-Wagner B, Bierwirth T, Mezger J, Klingmuller D. Clinical significance of serum S100 in metastatic malignant melanoma. Eur J Cancer. 1995;31A(11):1898–1902. doi:10.1016/0959-8049(95)00087-Y
  • Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19(6):739–744. doi:10.1016/0006-291X(65)90320-7
  • Shi S, Wang G, Zhang K, et al. Expression of S100beta protein in patients with vascular dementia after basal ganglia hemorrhage and its clinical significance. Exp Ther Med. 2017;13(5):1917–1921. doi:10.3892/etm.2017.4207
  • Nomura-Komoike K, Saitoh F, Komoike Y, Fujieda H. DNA damage response in proliferating muller glia in the mammalian retina. Invest Ophthalmol Vis Sci. 2016;57(3):1169–1182. doi:10.1167/iovs.15-18101
  • Cochran AJ, Holland GN, Saxton RE, et al. Detection and quantification of S-100 protein in ocular tissues and fluids from patients with intraocular melanoma. Br J Ophthalmol. 1988;72(11):874–879. doi:10.1136/bjo.72.11.874
  • Cochran AJ, Holland GN, Wen DR, et al. Detection of cytoplasmic S-100 protein in primary and metastatic intraocular melanomas. Invest Ophthalmol Vis Sci. 1983;24(8):1153–1155.
  • Missotten GS, Tang NE, Korse CM, et al. Prognostic value of S-100-beta serum concentration in patients with uveal melanoma. Arch Ophthalmol. 2003;121(8):1117–1119. doi:10.1001/archopht.121.8.1117
  • Missotten GS, Korse CM, van Dehn C, et al. S-100B protein and melanoma inhibitory activity protein in uveal melanoma screening. A comparison with liver function tests. Tumour Biol. 2007;28(2):63–69. doi:10.1159/000099151
  • Blesch A, Bosserhoff AK, Apfel R, et al. Cloning of a novel malignant melanoma-derived growth-regulatory protein, MIA. Cancer Res. 1994;54(21):5695–5701.
  • Bosserhoff AK, Moser M, Hein R, Landthaler M, Buettner R. In situ expression patterns of melanoma-inhibiting activity (MIA) in melanomas and breast cancers. J Pathol. 1999;187(4):446–454. doi:10.1002/(SICI)1096-9896(199903)187:4<446::AID-PATH267>3.0.CO;2-Y
  • Bosserhoff AK, Buettner R. Expression, function and clinical relevance of MIA (melanoma inhibitory activity). Histol Histopathol. 2002;17(1):289–300. doi:10.14670/HH-17.289
  • Bosserhoff AK, Lederer M, Kaufmann M, et al. MIA, a novel serum marker for progression of malignant melanoma. Anticancer Res. 1999;19(4A):2691–2693.
  • Schaller UC, Bosserhoff AK, Neubauer AS, Buettner R, Kampik A, Mueller AJ. Melanoma inhibitory activity: a novel serum marker for uveal melanoma. Melanoma Res. 2002;12(6):593–599. doi:10.1097/00008390-200212000-00009
  • Reiniger IW, Schaller UC, Haritoglou C, et al. “Melanoma inhibitory activity” (MIA): a promising serological tumour marker in metastatic uveal melanoma. Graefes Arch Clin Exp Ophthalmol. 2005;243(11):1161–1166. doi:10.1007/s00417-005-1171-4
  • Steitz SA, Speer MY, McKee MD, et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol. 2002;161(6):2035–2046. doi:10.1016/S0002-9440(10)64482-3
  • Zhao H, Chen Q, Alam A, et al. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018;9(3):356. doi:10.1038/s41419-018-0391-6
  • Zhou Y, Dai DL, Martinka M, et al. Osteopontin expression correlates with melanoma invasion. J Invest Dermatol. 2005;124(5):1044–1052. doi:10.1111/j.0022-202X.2005.23680.x
  • Rittling SR, Chambers AF. Role of osteopontin in tumour progression. Br J Cancer. 2004;90(10):1877–1881. doi:10.1038/sj.bjc.6601839
  • Denhardt D. Osteopontin expression correlates with melanoma invasion. J Invest Dermatol. 2005;124(5):xvi–xviii. doi:10.1111/j.0022-202X.2005.23708.x
  • Kadkol SS, Lin AY, Barak V, et al. Osteopontin expression and serum levels in metastatic uveal melanoma: a pilot study. Invest Ophthalmol Vis Sci. 2006;47(3):802–806. doi:10.1167/iovs.05-0422
  • Barak V, Frenkel S, Kalickman I, Maniotis AJ, Folberg R, Pe’er J. Serum markers to detect metastatic uveal melanoma. Anticancer Res. 2007;27(4A):1897–1900.
  • Haritoglou I, Wolf A, Maier T, Haritoglou C, Hein R, Schaller UC. Osteopontin and ‘melanoma inhibitory activity’: comparison of two serological tumor markers in metastatic uveal melanoma patients. Ophthalmologica. 2009;223(4):239–243. doi:10.1159/000206139
  • Suesskind D, Schatz A, Schnichels S, et al. GDF-15: a novel serum marker for metastases in uveal melanoma patients. Graefes Arch Clin Exp Ophthalmol. 2012;250(6):887–895. doi:10.1007/s00417-011-1786-6
  • Barak V, Kaiserman I, Frenkel S, Hendler K, Kalickman I, Pe’er J. The dynamics of serum tumor markers in predicting metastatic uveal melanoma (part 1). Anticancer Res. 2011;31(1):345–349.
  • Bootcov MR, Bauskin AR, Valenzuela SM, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A. 1997;94(21):11514–11519. doi:10.1073/pnas.94.21.11514
  • Boyle GM, Pedley J, Martyn AC, et al. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J Invest Dermatol. 2009;129(2):383–391. doi:10.1038/jid.2008.270
  • Amaro A, Gangemi R, Piaggio F, et al. The biology of uveal melanoma. Cancer Metastasis Rev. 2017;36(1):109–140.
  • Langley RR, Fidler IJ. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev. 2007;28(3):297–321.
  • Kivela T, Eskelin S, Kujala E. Metastatic uveal melanoma. Int Ophthalmol Clin. 2006;46(1):133–149. doi:10.1097/01.iio.0000195861.71558.13
  • Hendrix MJ, Seftor EA, Seftor RE, et al. Regulation of uveal melanoma interconverted phenotype by hepatocyte growth factor/scatter factor (HGF/SF). Am J Pathol. 1998;152(4):855–863.
  • Seftor EA, Meltzer PS, Kirschmann DA, et al. Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis. 2002;19(3):233–246. doi:10.1023/A:1015591624171
  • Frenkel S, Zloto O, Pe’er J, Barak V. Insulin-like growth factor-1 as a predictive biomarker for metastatic uveal melanoma in humans. Invest Ophthalmol Vis Sci. 2013;54(1):490–493. doi:10.1167/iovs.12-10228
  • Bondy CA, Werner H, Roberts CT Jr., LeRoith D. Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol Endocrinol. 1990;4(9):1386–1398. doi:10.1210/mend-4-9-1386
  • Pollak MN. Insulin-like growth factors and neoplasia. Novartis Found Symp. 2004;262:84–98;discussion 98–107, 265–108.
  • Al-Jamal RT, Kivela T. Prognostic associations of insulin-like growth factor-1 receptor in primary uveal melanoma. Can J Ophthalmol. 2011;46(6):471–476. doi:10.1016/j.jcjo.2011.09.013
  • Boyd SR, Tan D, Bunce C, et al. Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window. Br J Ophthalmol. 2002;86(4):448–452. doi:10.1136/bjo.86.4.448
  • Missotten GS, Notting IC, Schlingemann RO, et al. Vascular endothelial growth factor a in eyes with uveal melanoma. Arch Ophthalmol. 2006;124(10):1428–1434. doi:10.1001/archopht.124.10.1428
  • El Filali M, GS M, Maat W, et al. Regulation of VEGF-A in uveal melanoma. Invest Ophthalmol Vis Sci. 2010;51(5):2329–2337. doi:10.1167/iovs.09-4739
  • Barak V, Pe’er J, Kalickman I, Frenkel S. VEGF as a biomarker for metastatic uveal melanoma in humans. Curr Eye Res. 2011;36(4):386–390. doi:10.3109/02713683.2010.534573
  • Ijland SA, Jager MJ, Heijdra BM, Westphal JR, Peek R. Expression of angiogenic and immunosuppressive factors by uveal melanoma cell lines. Melanoma Res. 1999;9(5):445–450. doi:10.1097/00008390-199910000-00003
  • Anastassiou G, Schilling H, Stang A, Djakovic S, Heiligenhaus A, Bornfeld N. Expression of the cell adhesion molecules ICAM-1, VCAM-1 and NCAM in uveal melanoma: a clinicopathological study. Oncology. 2000;58(1):83–88. doi:10.1159/000012083
  • Lai K, Conway RM, Crouch R, Jager MJ, Madigan MC. Expression and distribution of MMPs and TIMPs in human uveal melanoma. Exp Eye Res. 2008;86(6):936–941. doi:10.1016/j.exer.2008.03.010
  • Kruckel A, Moreira A, Frohlich W, Schuler G, Heinzerling L. Eosinophil-cationic protein - a novel liquid prognostic biomarker in melanoma. BMC Cancer. 2019;19(1):207. doi:10.1186/s12885-019-5384-z
  • Michelson JB, Felberg NT, Shields JA. Carcinoembryonic antigen. Its role in the evaluation of intraocular malignant tumors. Arch Ophthalmol. 1976;94(3):414–416. doi:10.1001/archopht.1976.03910030200005
  • Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen C. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA. 1993;270(8):943–947. doi:10.1001/jama.1993.03510080047030
  • Kudo Y, Siriwardena BS, Hatano H, Ogawa I, Takata T. Periostin: novel diagnostic and therapeutic target for cancer. Histol Histopathol. 2007;22(10):1167–1174. doi:10.14670/HH-22.1167
  • Vidyasagar A, Wilson NA, Djamali A. Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair. 2012;5(1):7. doi:10.1186/1755-1536-5-7
  • Pyle-Chenault RA, Stolk JA, Molesh DA, et al. VSGP/F-spondin: a new ovarian cancer marker. Tumour Biol. 2005;26(5):245–257. doi:10.1159/000087379
  • Song J, Merbs SL, Sokoll LJ, Chan DW, Zhang Z. A multiplex immunoassay of serum biomarkers for the detection of uveal melanoma. Clin Proteomics. 2019;16:10. doi:10.1186/s12014-019-9230-8
  • Pardo M, Garcia A, Thomas B, et al. Proteome analysis of a human uveal melanoma primary cell culture by 2-DE and MS. Proteomics. 2005;5(18):4980–4993. doi:10.1002/pmic.200500030
  • Wu GJ, Wu MW, Wang SW, et al. Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cell lines and tissues with malignant progression. Gene. 2001;279(1):17–31. doi:10.1016/S0378-1119(01)00736-3
  • Reeves R, Edberg DD, Li Y. Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol Cell Biol. 2001;21(2):575–594. doi:10.1128/MCB.21.2.575-594.2001
  • Pardo M, Garcia A, Antrobus R, Blanco MJ, Dwek RA, Zitzmann N. Biomarker discovery from uveal melanoma secretomes: identification of gp100 and cathepsin D in patient serum. J Proteome Res. 2007;6(7):2802–2811. doi:10.1021/pr070021t
  • Pardo M, Garcia A, Thomas B, et al. The characterization of the invasion phenotype of uveal melanoma tumour cells shows the presence of MUC18 and HMG-1 metastasis markers and leads to the identification of DJ-1 as a potential serum biomarker. Int J Cancer. 2006;119(5):1014–1022. doi:10.1002/ijc.21942
  • Zuidervaart W, Hensbergen PJ, Wong MC, et al. Proteomic analysis of uveal melanoma reveals novel potential markers involved in tumor progression. Invest Ophthalmol Vis Sci. 2006;47(3):786–793. doi:10.1167/iovs.05-0314
  • Wang F, Bing Z, Zhang Y, et al. Quantitative proteomic analysis for radiation-induced cell cycle suspension in 92-1 melanoma cell line. J Radiat Res. 2013;54(4):649–662. doi:10.1093/jrr/rrt010
  • Yan LB, Shi K, Bing ZT, Sun YL, Shen Y. Proteomic analysis of energy metabolism and signal transduction in irradiated melanoma cells. Int J Ophthalmol. 2013;6(3):286–294. doi:10.3980/j.issn.2222-3959.2013.03.06
  • Angi M, Kalirai H, Prendergast S, et al. In-depth proteomic profiling of the uveal melanoma secretome. Oncotarget. 2016;7(31):49623–49635. doi:10.18632/oncotarget.v7i31
  • Surman M, Hoja-Lukowicz D, Szwed S, et al. An insight into the proteome of uveal melanoma-derived ectosomes reveals the presence of potentially useful biomarkers. Int J Mol Sci. 2019;20:15. doi:10.3390/ijms20153789
  • Nagakubo D, Taira T, Kitaura H, et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun. 1997;231(2):509–513. doi:10.1006/bbrc.1997.6132
  • Wilson MA. The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid Redox Signal. 2011;15(1):111–122. doi:10.1089/ars.2010.3481
  • Vasseur S, Afzal S, Tardivel-Lacombe J, Park DS, Iovanna JL, Mak TW. DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc Natl Acad Sci U S A. 2009;106(4):1111–1116. doi:10.1073/pnas.0812745106
  • Fan J, Ren H, Jia N, et al. DJ-1 decreases bax expression through repressing p53 transcriptional activity. J Biol Chem. 2008;283(7):4022–4030. doi:10.1074/jbc.M707176200
  • Bande MF, Santiago M, Blanco MJ, et al. Serum DJ-1/PARK 7 is a potential biomarker of choroidal nevi transformation. Invest Ophthalmol Vis Sci. 2012;53(1):62–67. doi:10.1167/iovs.11-7948
  • Pineiro-Ces A, Rodriguez Alvarez MJ, Santiago M, et al. Detecting ultrasonographic hollowness in small choroidal melanocytic tumors using 10 MHz and 20 MHz ultrasonography: a comparative study. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):2005–2011. doi:10.1007/s00417-014-2758-4
  • Bande MF, Santiago M, Muinelo-Romay L, et al. Detection of circulating melanoma cells in choroidal melanocytic lesions. BMC Res Notes. 2015;8:452. doi:10.1186/s13104-015-1420-5
  • Chen LL, Tian JJ, Su L, et al. DJ-1: a promising marker in metastatic uveal melanoma. J Cancer Res Clin Oncol. 2015;141(2):315–321. doi:10.1007/s00432-014-1804-2
  • Berson JF, Harper DC, Tenza D, Raposo G, Marks MS. Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell. 2001;12(11):3451–3464. doi:10.1091/mbc.12.11.3451
  • Hoashi T, Tamaki K, Hearing VJ. The secreted form of a melanocyte membrane-bound glycoprotein (Pmel17/gp100) is released by ectodomain shedding. FASEB J. 2010;24(3):916–930. doi:10.1096/fj.09-140921
  • Bande MF, Santiago M, Mera P, et al. ME20-S as a potential biomarker for the evaluation of uveal melanoma. Invest Ophthalmol Vis Sci. 2015;56(12):7007–7011. doi:10.1167/iovs.15-17183
  • Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146.
  • Smith B, Selby P, Southgate J, Pittman K, Bradley C, Blair GE. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet. 1991;338(8777):1227–1229. doi:10.1016/0140-6736(91)92100-G
  • Callejo SA, Antecka E, Blanco PL, Edelstein C, Burnier MN Jr. Identification of circulating malignant cells and its correlation with prognostic factors and treatment in uveal melanoma. A Prospective Longitudinal Study. Eye. 2007;21(6):752–759.
  • Horodenski J. [Studies on the presence of free cells of malignant melanoma of the uvea in peripheral blood]. Klin Oczna. 1969;39(3):407–412.
  • Fernandes BF, Belfort RN, Di Cesare S, Burnier MN Jr. Circulating uveal melanoma cells: should we test for them?. Can J Ophthalmol. 2008;43(2):155–158. doi:10.3129/i08-011
  • Tobal K, Sherman LS, Foss AJ, Lightman SL. Detection of melanocytes from uveal melanoma in peripheral blood using the polymerase chain reaction. Invest Ophthalmol Vis Sci. 1993;34(9):2622–2625.
  • Foss AJ, Guille MJ, Occleston NL, Hykin PG, Hungerford JL, Lightman S. The detection of melanoma cells in peripheral blood by reverse transcription-polymerase chain reaction. Br J Cancer. 1995;72(1):155–159. doi:10.1038/bjc.1995.293
  • Boldin I, Langmann G, Richtig E, et al. Five-year results of prognostic value of tyrosinase in peripheral blood of uveal melanoma patients. Melanoma Res. 2005;15(6):503–507. doi:10.1097/00008390-200512000-00004
  • Mocellin S, Hoon D, Ambrosi A, Nitti D, Rossi CR. The prognostic value of circulating tumor cells in patients with melanoma: a systematic review and meta-analysis. Clin Cancer Res. 2006;12(15):4605–4613. doi:10.1158/1078-0432.CCR-06-0823
  • Ulmer A, Beutel J, Susskind D, et al. Visualization of circulating melanoma cells in peripheral blood of patients with primary uveal melanoma. Clin Cancer Res. 2008;14(14):4469–4474. doi:10.1158/1078-0432.CCR-08-0012
  • Suesskind D, Ulmer A, Schiebel U, et al. Circulating melanoma cells in peripheral blood of patients with uveal melanoma before and after different therapies and association with prognostic parameters: a pilot study. Acta Ophthalmol (Copenh). 2011;89(1):17–24. doi:10.1111/j.1755-3768.2009.01617.x
  • Mazzini C, Pinzani P, Salvianti F, et al. Circulating tumor cells detection and counting in uveal melanomas by a filtration-based method. Cancers. 2014;6(1):323–332. doi:10.3390/cancers6010323
  • Bidard FC, Madic J, Mariani P, et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int J Cancer. 2014;134(5):1207–1213. doi:10.1002/ijc.28436
  • Terai M, Mu Z, Eschelman DJ, et al. Arterial blood, rather than venous blood, is a better source for circulating melanoma cells. EBioMedicine. 2015;2(11):1821–1826. doi:10.1016/j.ebiom.2015.09.019
  • Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. doi:10.1038/sigtrans.2015.4
  • Worley LA, Long MD, Onken MD, Harbour JW. Micro-RNAs associated with metastasis in uveal melanoma identified by multiplexed microarray profiling. Melanoma Res. 2008;18(3):184–190. doi:10.1097/CMR.0b013e3282feeac6
  • Achberger S, Aldrich W, Tubbs R, Crabb JW, Singh AD, Triozzi PL. Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol Immunol. 2014;58(2):182–186. doi:10.1016/j.molimm.2013.11.018
  • Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget. 2015;6(7):4562–4568. doi:10.18632/oncotarget.2923
  • Liu N, Sun Q, Chen J, et al. MicroRNA-9 suppresses uveal melanoma cell migration and invasion through the NF-kappaB1 pathway. Oncol Rep. 2012;28(3):961–968. doi:10.3892/or.2012.1905
  • Radhakrishnan A, Badhrinarayanan N, Biswas J, Krishnakumar S. Analysis of chromosomal aberration (1, 3, and 8) and association of microRNAs in uveal melanoma. Mol Vis. 2009;15:2146–2154.
  • Yang C, Wei W. The miRNA expression profile of the uveal melanoma. Sci China Life Sci. 2011;54(4):351–358. doi:10.1007/s11427-011-4149-y
  • Chen X, He D, Dong XD, et al. MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma. Invest Ophthalmol Vis Sci. 2013;54(3):2248–2256. doi:10.1167/iovs.12-10977
  • Rothwell DG, Smith N, Morris D, et al. Genetic profiling of tumours using both circulating free DNA and circulating tumour cells isolated from the same preserved whole blood sample. Mol Oncol. 2016;10(4):566–574. doi:10.1016/j.molonc.2015.11.006
  • Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602. doi:10.1038/nature07586
  • Sellam A, Desjardins L, Barnhill R, et al. Fine needle aspiration biopsy in uveal melanoma: technique, complications, and outcomes. Am J Ophthalmol. 2016;162:28–34 e21. doi:10.1016/j.ajo.2015.11.005
  • Chang MY, Rao NP, Burgess BL, Johnson L, McCannel TA. Heterogeneity of monosomy 3 in fine needle aspiration biopsy of choroidal melanoma. Mol Vis. 2013;19:1892–1900.
  • Wu M, Wang G, Hu W, Yao Y, Yu XF. Emerging roles and therapeutic value of exosomes in cancer metastasis. Mol Cancer. 2019;18(1):53. doi:10.1186/s12943-019-0964-8
  • Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta. 2012;1826(1):103–111. doi:10.1016/j.bbcan.2012.03.006
  • Bennett CW, Berchem G, Kim YJ, El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget. 2016;7(43):71013–71035. doi:10.18632/oncotarget.v7i43
  • Salvianti F, Massi D, De Giorgi V, Gori A, Pazzagli M, Pinzani P. Evaluation of the liquid biopsy for the detection of brafv600e mutation in metastatic melanoma patients. Cancer Biomark. Epub 2019 Sep 3.