114
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Alteration in binocular fusion modifies audiovisual integration in children

, , , , &
Pages 1137-1145 | Published online: 04 Jul 2019

References

  • Stein BE, Meredith MA. The Merging of the Senses. Cambridge, MA: MIT Press; 1993.
  • Koelewijn T, Bronkhorst A, Theeuwes J. Attention and the multiple stages of multisensory integration: a review of audiovisual studies. Acta Psychol (Amst). 2010;134(3):372–384. doi:10.1016/j.actpsy.2010.03.010
  • Cappe C, Thut G, Romei V, Murray M. Auditory-visual multisensory interactions in humans: timing, topography, directionality, and sources. J Neurosci. 2010;30:12572–12580. doi:10.1523/JNEUROSCI.1099-10.2010
  • Cappe C, Thut G, Romei V, Murray MM. Selective integration of auditory-visual looming cues by humans. Neuropsychologia. 2009;47:1045–1052. doi:10.1016/j.neuropsychologia.2008.11.003
  • Shams L, Kamitani Y, Shimojo S. Visual illusion induced by sound. Brain Res Cogn Brain Res. 2002;14:147–152. doi:10.1016/S0926-6410(02)00069-1
  • Mishra J, Martinez A, Hillyard SA. Cortical processes underlying sound-induced flash fusion. Brain Res. 2008;1242:102–115. doi:10.1016/j.brainres.2008.05.023
  • Stein BE, Meredith MA, Huneycutt WS, Mcdade L. Behavioral indices of multisensory integration: orientation to visual cues is affected by auditory stimuli. J Cog Neurosc. 1989;1:12–24. doi:10.1162/jocn.1989.1.1.12
  • Gori M, Sandini G, Burr D. Development of visuo-auditory integration in space and time. Front Integr Neurosci. 2012;6:77.
  • Hidaka S, Ide M. Sound can suppress visual perception. Sci Rep. 2015;5:10483. doi:10.1038/srep10483
  • Gori M. Multisensory integration and calibration in children and adults with and without sensory and motor disabilities. Multisens Res. 2015;28:71–99.
  • Dionne-Dostie E, Paquette N, Lassonde M, Gallagher A. Multisensory integration and child neurodevelopment. Brain Sci. 2015;5:32–57. doi:10.3390/brainsci5010032
  • Murray MM, Lewkowicz DJ, Amedi A, Wallace MT. Multisensory processes: a balancing act across the lifespan. Trends Neurosci. 2016;39:567–579. doi:10.1016/j.tins.2016.05.003
  • Guerreiro MJS, Putzar L, Röder B. The effect of early visual deprivation on the neural bases of multisensory processing. Brain. 2015;138:1499–1504. doi:10.1093/brain/awu353
  • de Heering A, Dormal G, Pelland M, Lewis T, Maurer D, Collignon O. A brief period of postnatal visual deprivation alters the balance between auditory and visual attention. Curr Biol. 2016;26:3101–3105. doi:10.1016/j.cub.2016.10.014
  • Richards MD, Goltz HC, Wong AMF. Alterations in audiovisual simultaneity perception in amblyopia. PLoS One. 2017;12:e0179516. doi:10.1371/journal.pone.0179516
  • Carriere BR, Royal DW, Perrault TJ, et al. Visual deprivation alters the development of cortical multisensory integration. J Neuropsysiol. 2007;98:2858–2867. doi:10.1152/jn.00587.2007
  • Chen YC, Lewis TL, Shore DI, Maurer D. Early binocular input is critical for development of audiovisual but not visuotactile simultaneity perception. Curr Biol. 2017;27:583–589. doi:10.1016/j.cub.2017.01.009
  • Hess RF, Mansouri B, Thompson B. Restoration of binocular vision in amblyopia. Strabismus. 2011;19:110–118. doi:10.3109/09273972.2011.600418
  • Mitchell DE, Sengpiel F. Neural mechanisms of recovery following early visual deprivation. Philos Trans R Soc Lond B Biol Sci. 2009;364:383–398. doi:10.1098/rstb.2008.0192
  • Stidwill D, Fletcher R. Normal Binocular Vision: Theory, Investigation and Practical Aspects. Oxford: Wiley-Blackwell; 2011.
  • Wurtz RH. Neuronal mechanisms of visual stability. Vision Res. 2008;48(20):2070–2089. doi:10.1016/j.visres.2008.03.021
  • Scheiman M, Wick B. Clinical Management of Binocular Vision: Heterophoric, Accommodative, and Eye Movement Disorders. Philadelphia: Lippincott Williams and Wilkins Ed; 2013.
  • Van Rijn LJ, Ten Tusscher MP, de Jong I, Hendrikse F. Asymmetrical vertical phorias indicating dissociated vertical deviation in subjects with normal binocular vision. Vision Res. 1998;38:2973–2978. doi:10.1016/S0042-6989(98)00079-0
  • Casillas Casillas E, Rosenfield M. Comparison of subjective heterophoria testing with a phoropter and trial frame. Optom Vis Sci. 2006;83:237–241. doi:10.1097/01.opx.0000197958.83213.b1
  • Brascamp JW, Klink PC, Levelt WJ. The ‘laws’ of binocular rivalry: 50 years of Levelt’s propositions. Vision Res. 2015;109:20–37. doi:10.1016/j.visres.2015.02.019
  • Perry CJ, Fallah M. Effector-based attention systems. Ann N Y Acad Sci. 2017;1396:56–69. doi:10.1111/nyas.13354
  • Rizzolatti G, Riggio L, Dascola I, Umiltá C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia. 1987;25:31–40. doi:10.1016/0028-3932(87)90041-8
  • Moore T, Fallah M. Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol. 2004;91:152–162. doi:10.1152/jn.00741.2002
  • Kustov AA, Robinson DL. Shared neural control of attentional shifts and eye movements. Nature. 1996;384:74–77. doi:10.1038/384074a0
  • Balslev D, Gowen E, Miall RC. Decreased visual attention further from the perceived direction of gaze for equidistant retinal targets. J Cogn Neurosci. 2011;23:661–669. doi:10.1162/jocn.2010.21440
  • Balslev D, Newman W, Knox PC. Extraocular muscle afferent signals modulate visual attention. Invest Ophthalmol Vis Sci. 2012;53:7004–7009. doi:10.1167/iovs.12-10249
  • Odoj B, Balslev D. Visual sensitivity shifts with perceived eye position. J Cogn Neurosci. 2013;25:1180–1189. doi:10.1162/jocn_a_00382
  • Odoj B, Balslev D. Role of oculoproprioception in coding the locus of attention. J Cogn Neurosci. 2016;28:517–528. doi:10.1162/jocn_a_00910
  • Mozolic JL, Joyner D, Hugenschmidt CE, et al. Cross-modal deactivations during modality-specific selective attention. BMC Neurol. 2008;8:35. doi:10.1186/1471-2377-8-35
  • Fu KM, Shah AS, O’Connell MN, et al. Timing and laminar profile of eye-position effects on auditory responses in primate auditory cortex. J Neurophysiol. 2004;92:3522–3531. doi:10.1152/jn.01228.2003
  • Werner-Reiss U, Kelly KA, Trause AS, Underhill AM, Groh JM. Eye position affects activity in primary auditory cortex of primates. Curr Biol. 2003;13:554–562.
  • Wu J, Li Q, Bai O, Touge T. Multisensory interactions elicited by audiovisual stimuli presented peripherally in a visual attention task: a behavioral and event-related potential study in humans. J Clin Neurophysiol. 2009;26:407–413. doi:10.1097/WNP.0b013e3181c298b1
  • Houde JF, Nagarajan SS, Sekihara K, Merzenich MM. Modulation of the auditory cortex during speech: an MEG study. J Cogn Neurosci. 2002;14:1125–1138. doi:10.1162/089892902760807140
  • Martikainen MH, Kaneko K, Hari R. Suppressed responses to self-triggered sounds in the human auditory cortex. Cereb Cortex. 2005;15:299–302. doi:10.1093/cercor/bhh131
  • Murray MM, Thelen A, Thut G, Romei V, Martuzzi R, Matusz PJ. The multisensory function of the human primary visual cortex. Neuropsychologia. 2016;83:161–169. doi:10.1016/j.neuropsychologia.2015.08.011
  • Franciotti R, Brancucci A, Della Penna S, Onofrj M, Tommasi L. Neuromagnetic responses reveal the cortical timing of audiovisual synchrony. Neuroscience. 2011;193:182–192. doi:10.1016/j.neuroscience.2011.07.018