79
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Steady-State Pattern Electroretinogram and Frequency Doubling Technology in Adult Dyslexic Readers

ORCID Icon, &
Pages 2451-2459 | Published online: 11 Dec 2019

References

  • Lovegrove W, Bowling A, Badcock D, Blackwood M. Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. Science. 1980;210:439–440. doi:10.1126/science.7433985
  • Slaghuis W, Lovegrove W. Spatial frequency mediated visible persistence and specific reading disability. Perception. 1985;13:527–534. doi:10.1068/p130527
  • Williams M, Molinet K, LeCluyse K. Visual masking as a measure of temporal processing in normal and disabled readers. Clin Vis Sci. 1989;4(2):137–144.
  • Livingstone MS, Rosen GD, Drislane FW, Galaburda AM. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci. 1991;88:7943–7947. doi:10.1073/pnas.88.18.7943
  • Cornelissen P, Richardson A, Mason A, Fowler S, Stein F. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexic and controls. Vis Res. 1995;35:1483–1494. doi:10.1016/0042-6989(95)98728-R
  • Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature. 1996;382:66–69. doi:10.1038/382066a0
  • Demb JB, Boynton GM, Best M, Heeger DJ. Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vis Res. 1998b;38:1555–1559. doi:10.1016/S0042-6989(98)00075-3
  • Vidyasagar TR, Pammer K. Impaired visual search in dyslexia relates to the role of the magnocellular pathway in attention. Neuroreport. 1999;10:1–5. doi:10.1097/00001756-199904260-00024
  • Hess RF, Thompson B, Gole GA, Mullen KT. The amblyopic deficit and its relationship to geniculo-cortical processing streams. J Neurophysiol. 2010;104(1):475–483. doi:10.1152/jn.01060.2009
  • Lee BB, Pokorny J, Smith VC, Martin PR, Valberg A. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J Opt Soc Am A. 1990;7:2223–2236. doi:10.1364/JOSAA.7.002223
  • Merigan WH, Katz LM, Maunsell JH. The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci. 1991;11:994–1001. doi:10.1523/JNEUROSCI.11-04-00994.1991
  • Derrington A, Lennie P. Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque. J Physiol. 1984;357:219–240. doi:10.1113/jphysiol.1984.sp015498
  • Chatterjee S, Callaway EM. Parallel colour-opponent pathways to primary visual cortex. Nature. 2003;426:668–671. doi:10.1038/nature02167
  • Dacey DM, Packer OS. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiol. 2003;13:421–427. doi:10.1016/S0959-4388(03)00103-X
  • Martin PR, White AJ, Goodchild AK, Wilder HD, Sefton AE. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur J Neurosci. 1997;9:1536–1541. doi:10.1111/j.1460-9568.1997.tb01509.x
  • Kaplan E, Shapley RM. X and Y cells in the lateral geniculate nucleus of macaque monkeys. J Physiol. 1982;330:125–143. doi:10.1113/jphysiol.1982.sp014333
  • Solomon SG, White AJ, Martin PR. Temporal contrast sensitivity in the lateral geniculate nucleus of a New World monkey, the marmoset Callithrix jacchus. J Physiol. 1999;517:907–917. doi:10.1111/j.1469-7793.1999.0907s.x
  • Maddess T, Goldberg I, Dobinson J, Wine S, AH W, AC J. Testing for glaucoma with the spatial frequency doubling illusion. Vis Res. 1999;39:4258–4273. doi:10.1016/S0042-6989(99)00135-2
  • Romani A, Conte S, Callieco R, et al. Visual evoked potential abnormalities in dyslexic children. Funct Neurol. 2001;16:219–229.
  • Kobayashi T, Inagaki M, Yamazaki H, Kita Y, Kaga M, Oka A. Relationship between magnocellular function and reading skills in children: a study using visual evoked potentials. No To Hattatsu. 2014;46:424–428.
  • Brannan JR, Solan HA, Ficarra AP, Ong E. Effect of luminance in visual evoked potential amplitudes in normal and disabled readers. Optom Vis Sci. 1998;75:279–283. doi:10.1097/00006324-199804000-00025
  • Schulte‑Körne G, Bartling J, Deimel W, Remschmidt H. Motion‑onset VEPs in dyslexia. Evidence for visual perceptual deficit. Neuroreport. 2004;15:1075‑1078. doi:10.1097/00001756-200404290-00029
  • Shandiz HJ, Heyrani M, Sobhani-Rad D, et al. Pattern visual evoked potentials in dyslexic children. J Ophthalmic Vis Res. 2017;12(4):402‑6.
  • Kubova Z, Kuba M, Kreml.cˇek J, et al. Comparison of visual information processing in school-age dyslexics and normal readers via motion-onset visual evoked potentials. Vis Res. 2015;111:97–104. doi:10.1016/j.visres.2015.03.027
  • Corbetta M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical,independent or overlapping neural systems? Proc Natl Acad Sci U S A. 1998;95:831–838. doi:10.1073/pnas.95.3.831
  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA. A common network of functional areas for attention and eye movements. Neuron. 1998;21:761–773. doi:10.1016/S0896-6273(00)80593-0
  • Peyrin C, Démonet JF, N’Guyen-Morel MA, LeBas JF, Valdois S. Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. Brain Lang. 2011;118:128–138. doi:10.1016/j.bandl.2010.06.005
  • Lobier MA, Peyrin C, Pichat C, LeBas JF, Valdois S. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Front Hum Neurosci. 2014;8:479. doi:10.3389/fnhum.2014.00479
  • Kelly DH. Frequency doubling in visual responses. J Opt Soc Am. 1966;56:1628–1633. doi:10.1364/JOSA.56.001628
  • Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss with frequency-doubling perimetry. Invest Ophthalmol Vis Sci. 1997;38:413–425.
  • Medeiros FA, Sample PA, Weinreb RN. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol. 2004;137:863–871. doi:10.1016/j.ajo.2003.12.009
  • Schiavi C, Tassi F, Finzi A, Strobbe E, Cellini M. Steady-state pattern electroretinogram and frequency doubling technology in anisometropic amblyopia. Clin Ophthalmol. 2016;10:2061–2068. doi:10.2147/OPTH
  • Pammer K, Wheatley C. Isolating the M(y)-cell response in dyslexia using the spatial frequency doubling illusion. Vis Res. 2001;41:2139–2147. doi:10.1016/S0042-6989(01)00092-X
  • Avellis FO, Dassò A, Gandolfi S, Carta A. Magnocellular deficit in dyslexia: a preliminary analysis of possible patterns of visual field deficit tested with frequency doubling illusion. Transl Biomed. 2016;7(4):1–6.
  • Maddess T, James AC, Goldberg I, Wine S, Dobinson J. Comparing a parallel PERG, automated perimetry, and frequency-doubling thresholds. Invest Ophthalmol Vis Sci. 2000;41:3827–3832.
  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Publishing; 2013.
  • Cornoldi C, Candela M. Prove di lettura e scrittura MT 16-19. Batteria per la verifica degli apprendimenti e la diagnosi di dislessia e disgrafia. Ed Centro Studi Erickson; 2015.
  • Siegel LS. Perspective on dyslexia. Pediatr Child Health. 2006;11(9):581–587. doi:10.1093/pch/11.9.581
  • Shaywitz SE. Dyslexia. N Engl J Med. 1998;338:307–312. doi:10.1056/NEJM199801293380507
  • Sun Z, Zou L, Zhang J, Mo S, Shao S, Zhong R. Prevalence and associated risk factors of dyslexic children in a middle‑sized city of China: a cross‑sectional study. PLoS One. 2013;8:e56688. doi:10.1371/journal.pone.0056688
  • Snowling MJ. Dyslexia. 2nd ed. Oxford, UK: Blackwell; 2000.
  • Shaywitz S. Overcoming Dyslexia: A New and Complete Science-Based Program for Reading Problems at Any Level. New York: Alfred A. Knopf; 2003.
  • Snowling MJ. From language to reading and dyslexia. Dyslexia. 2001;7:37–46. doi:10.1002/(ISSN)1099-0909
  • Goswami U. Why theories about developmental dyslexia require developmental designs. Trends Cogn Sci. 2003;7:534–540.
  • Goswami U. A temporal sampling frame work for developmental dyslexia. Trends Cogn Sci. 2011;15:3–10. doi:10.1016/j.tics.2010.10.001
  • Ramus F. Developmental dyslexia: specific phonological deficitor general sensorimotor dysfunction? Curr Opin Neurobiol. 2003;13:212–218. doi:10.1016/S0959-4388(03)00035-7
  • Ramus F, Szenkovits G. What phonological deficit? Q J Exp Psychol. 2008;61:129–141. doi:10.1080/17470210701508822
  • Gabrieli JD. Dyslexia:anew synergy between education and cognitive neuroscience. Science. 2009;325:280–283. doi:10.1126/science.1171999
  • Shamma SA, Micheyl C. Behind the scenes of auditory perception. Curr Opin Neurobiol. 2010;2010(20):361–366. doi:10.1016/j.conb.2010.03.009
  • Hari R, Renvall H. Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn Sci. 2001;5:525–532. doi:10.1016/S1364-6613(00)01801-5
  • Facoetti A. Reading and selective spatial attention: evidence from behavioral studies in dyslexic children. In: Tobias HD, editor. Trends Dyslexia Research. NewYork, NY: Nova Science Publishers; 2004:35–71.
  • Facoetti A. Spatial attention disorders in developmental dyslexia: towards the prevention of reading acquisition deficits. In: Steinand J, Kapoula Z, editors. Visual Aspect of Dyslexia. Oxford: Oxford University Press; 2012:123–136.
  • Tainturier MJ. The cognitive deficits responsible for developmental dyslexia: review of evidence for a selective visual attentional disorder. Dyslexia. 2004;10:339–363. doi:10.1002/dys.284
  • Vidyasagar TR, Pammer K. Dyslexia:adeficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci. 2010;14:57–63.
  • Gori S, Facoetti A. Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vis Res. 2014;99:78–87.
  • Pavlidis GT. Do eye movements hold the key to dyslexia? Neuropsychologia. 1981;19:57–64. doi:10.1016/0028-3932(81)90044-0
  • Bucci MP, Brémond-Gignac D, Kapoula Z. Latency of saccades and vergence eye movements in dyslexic children. Exp Brain Res. 2008a;188:1–12. doi:10.1007/s00221-008-1345-5
  • Bucci MP, Brémond-Gignac D, Kapoula Z. Poor binocular coordination of saccades in dyslexic children. Graefes Arch Clin Exp Ophthalmol. 2008b;246:417–428. doi:10.1007/s00417-007-0723-1
  • Galaburda AM, Kemper TL. Cytoarchitectonic abnormalities in dyslexia. Ann Neurol. 1979;6:94–100. doi:10.1002/ana.410060203
  • Galaburda AM, Lemay M, Kemper TM, Geschwind N. asymmetries in the brain may underlie cerebral dominance. Science. 1978;199:852–856. doi:10.1126/science.341314
  • Lawton T. Improving dorsal stream function in dyslexics by training figure/ground motion discrimination improves attention, reading fluency, and working memory. Front Hum Neurosci. 2016;10:397. doi:10.3389/fnhum.2016.00397
  • McCandliss BD, Cohen L, Dehaene S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci. 2003;7:293–299.
  • Shaywitz SE, Shaywitz BA. Dyslexia: specific reading disability. Biol Psychiatry. 2005;57:1301–1309. doi:10.1016/j.biopsych.2005.01.043
  • Richlan F, Kronbichler M, Wimmer H. Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp. 2009;30:3299–3308.
  • Zhou W, Xia Z, Bi Y, Shu H. Altered connectivity of the dorsal and ventral visual regions in dyslexic children: a resting-state fMRI study. Front Hum Neurosci. 2015;10(9):495.
  • McLean GM, Stuart GW, Coltheart V, Castles A. Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed? J Exp Psychol Hum Percept Perform. 2011;37(6):1957–1975. doi:10.1037/a0024668
  • Talcott JB, Hansen PC, Assoku EL, Stein JF. Visual motion sensitivity in dyslexia: evidence for temporal and energy integration deficits. Neuropsychologia. 2000;38(7):935–943. doi:10.1016/S0028-3932(00)00020-8
  • Skottum BC. The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vis Res. 2000;40(1):111–127. doi:10.1016/S0042-6989(99)00170-4
  • Kuba M, Szanyi J, Gayer D, Kremlacek J, Kubova Z. Electrophysiological testing of dyslexia. Acta Med (Hradec Kralove). 2001;44(4):131–134. doi:10.14712/18059694.2019.99
  • Kubova Z, Kuba M, Kremlacek J, et al. Difficulties of motion-onset VEP interpretation in school-age children. Doc Ophthalmologica. 2014;128(2):121–129. doi:10.1007/s10633-014-9429-y
  • Petrusca D, Grivich MI, Sher A, et al. Identification and characterization of a Y-like primate retinal ganglion cell type. J Neurosci. 2007;27(41):11019–11027. doi:10.1523/JNEUROSCI.2836-07.2007
  • Patel N. The use of frequency doubling technology to determine magnocellular pathway deficiencies. J Behav Optom. 2004;15(2):31–36.
  • Werth R. Rapid improvement of reading performance in children with dyslexia by altering the reading strategy: a novel approach to diagnoses and therapy of reading deficiencies. Restor Neurol Neurosci. 2018;36:679–691. doi:10.3233/RNN-180829
  • Sousa MC, Biteli LG, Dorairaj S, Maslin JS, Leite MT, Prata TS. Suitability of the visual field index according to glaucoma severity. J Curr Glaucoma Pract. 2015;9(3):65–68. doi:10.5005/jp-journals-10008-1186
  • Lutaka NA, Grochowski RA, Kasahara N. Correlation between visual field index and other functional and structural measures in glaucoma patients and suspects. J Ophthalmic Vis Res. 2017;12(1):53–57. doi:10.4103/jovr.jovr_98_16
  • Sireteanu R, Goertz R, Bachert I, Wandert T. Children with developmental dyslexia show a left visual “minineglect”. Vis Res. 2005;45:3075–3082. doi:10.1016/j.visres.2005.07.030
  • Mather DS, Milford TM, McRae L. Does dyslexia develop from left eye dominance. Percept Mot Skills. 2015;121(2):569–601. doi:10.2466/15.10.PMS.121c21x5
  • Heravian J, Sobhani-Rad D, Lari S, et al. Pattern visual evoked potentials in dyslexic versus normal children. J Ophthalmic Vis Res. 2015;10(3):274–278. doi:10.4103/2008-322X.170361
  • Kubova Z, Kuba M, Peregrin J, Novakova V. Visual evoked potential evidence for magnocellular system deficit in dyslexia. Physiol Res. 1996;45(1):87–89.
  • Bach M, Brigell MG, Hawlina M, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126(1):1–7. doi:10.1007/s10633-012-9353-y
  • Luo X, Frishman LJ. Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci. 2011;52(12):8571–8584. doi:10.1167/iovs.11-8376
  • Porciatti V, Ventura LM. Physiological significance of steady-state PERG losses in glaucoma: clues from simulation of abnormalities in normal subjects. J Glaucoma. 2009;18(7):535–542. doi:10.1097/IJG.0b013e318193c2e1
  • Crook JD, Peterson BB, Packer OS, Robinson FR, Troy JB, Dacey DM. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J Neurosci. 2008a;28:11277–11291. doi:10.1523/JNEUROSCI.2982-08.2008
  • Crook JD, Peterson BB, Packer OS, et al. The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. J Neurosci. 2008b;28:12654–12671. doi:10.1523/JNEUROSCI.2986-08.2008
  • Rosemberg A, Talebi V. The primate retina contains distinct types of Y-like ganglion cells. J Neurosci. 2009;29(16):5048–5050. doi:10.1523/JNEUROSCI.0423-09.2009