483
Views
19
CrossRef citations to date
0
Altmetric
Review

Voretigene Neparvovec in Retinal Diseases: A Review of the Current Clinical Evidence

ORCID Icon, &
Pages 3855-3869 | Published online: 13 Nov 2020

References

  • Kutluer M, Huang L, Marigo V. Targeting molecular pathways for the treatment of inherited retinal degeneration. Neural Regen Res. 2020;15(10):1784–1791. doi:10.4103/1673-5374.280303
  • RetNet. Summaries of genes and loci causing retinal diseases. 2-14-2020. [cited May 5, 2020]. Available from: https://sph.uth.edu/retnet/sum-dis.htm. Accessed October 23, 2020.
  • Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat. 2004;23(4):306–317. doi:10.1002/humu.20010
  • Gu S-M, Thompson DA, Srikumari CR, et al. Mutations in RPE65 cause autosomal recessive childhood–onset severe retinal dystrophy. Nat Genet. 1997;17(2):194–197. doi:10.1038/ng1097-194
  • Novartis announces landmark EU approval for one-time gene therapy Luxturna® to restore vision in people with rare inherited retinal disease. November 23, 2018. [cited May 5, 2020]. Available from: https://novartis.gcs-web.com/Novartis-announces-landmark-EU-approval-for-one-time-gene-therapy-Luxturna-to-restore-vision-in-people-with-rare-inherited-retinal-disease. Accessed October 23, 2020.
  • LUXTURNA (voretigene neparvovec-rzyl) US full prescribing information. 2017. [cited May 5, 2020]. Available from: https://sparktx.com/LUXTURNA_US_Prescribing_Information.pdf. Accessed October 23, 2020.
  • Thompson DA, Gal A. Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res. 2003;22(5):683–703. doi:10.1016/S1350-9462(03)00051-X
  • Redmond TM, Yu S, Lee E, et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet. 1998;20(4):344–351. doi:10.1038/3813
  • Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci USA. 2005;102(38):13658–13663. doi:10.1073/pnas.0504167102
  • Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci USA. 2005;102(35):12413–12418. doi:10.1073/pnas.0503460102
  • Van Hooser JP, Aleman TS, He YG, et al. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci USA. 2000;97(15):8623–8628. doi:10.1073/pnas.150236297
  • Den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419. doi:10.1016/j.preteyeres.2008.05.003
  • Wiszniewski W, Lewis RA, Stockton DW, et al. Potential involvement of more than one locus in trait manifestation for individuals with leber congenital amaurosis. Hum Genet. 2011;129(3):319–327. doi:10.1007/s00439-010-0928-y
  • Marlhens F, Bareil C, Griffoin JM, et al. Mutations in RPE65 cause leber’s congenital amaurosis. Nat Genet. 1997;17(2):139–141. doi:10.1038/ng1097-139
  • Chung DC, Traboulsi EI. Leber congenital amaurosis: clinical correlations with genotypes, gene therapy trials update, and future directions. J AAPOS. 2009;13(6):587–592. doi:10.1016/j.jaapos.2009.10.004
  • Perrault I, Rozet JM, Gerber S, et al. Leber congenital amaurosis. Mol Genet Metab. 1999;68(2):200–208. doi:10.1006/mgme.1999.2906
  • Leber T. Uber retinitis pigmentosa and angeborene amaurose. Graefes Arch Clin Exp Ophthalmol. 1869;15:13–20. doi:10.1007/BF02721213
  • Astuti GD, Bertelsen M, Preising MN, et al. Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in Leber congenital amaurosis in Denmark. Eur J Hum Genet. 2016;24(7):1071–1079. doi:10.1038/ejhg.2015.241
  • Jauregui R, Park KS, Tsang SH. Two-year progression analysis of RPE65 autosomal dominant retinitis pigmentosa. Ophthalmic Genet. 2018;39(4):544–549. doi:10.1080/13816810.2018.1484929
  • Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad Sci USA. 1998;95(6):3088–3093. doi:10.1073/pnas.95.6.3088
  • Wilbanks GA, Streilein JW. Characterization of suppressor cells in anterior chamber-associated immune deviation (ACAID) induced by soluble antigen. Evidence of two functionally and phenotypically distinct T-suppressor cell populations. Immunology. 1990;71(3):383–389.
  • Wenkel H, Streilein JW. Analysis of immune deviation elicited by antigens injected into the subretinal space. Invest Ophthalmol Vis Sci. 1998;39(10):1823–1834.
  • Han Z, Conley SM, Naash MI. AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects. Invest Ophthalmol Vis Sci. 2011;52(6):3051–3059. doi:10.1167/iovs.10-6916
  • Rodrigues GA, Shalaev E, Karami TK, Cunningham J, Slater NKH, Rivers HM. Pharmaceutical development of AAV-based gene therapy products for the eye. Pharm Res. 2018;36(2):29. doi:10.1007/s11095-018-2554-7
  • Nidetz NF, Mcgee MC, Tse LV, et al. Adeno-associated viral vector-mediated immune responses: understanding barriers to gene delivery. Pharmacol Ther. 2020;207:107453. doi:10.1016/j.pharmthera.2019.107453
  • Khani SC, Pawlyk BS, Bulgakov OV, et al. AAV-mediated expression targeting of rod and cone photoreceptors with a human rhodopsin kinase promoter. Invest Ophthalmol Vis Sci. 2007;48(9):3954–3961.
  • Li Q, Timmers AM, Guy J, Pang J, Hauswirth WW. Cone-specific expression using a human red opsin promoter in recombinant AAV. Vision Res. 2008;48(3):332–338. doi:10.1016/j.visres.2007.07.026
  • Auricchio A, Kobinger G, Anand V, et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. 2001;10(26):3075–3081. doi:10.1093/hmg/10.26.3075
  • Redmond TM, Hamel CP. Genetic analysis of RPE65: from human disease to mouse model. Meth Enzymol. 2000;316:705–724.
  • Veske A, Nilsson SE, Narfström K, Gal A. Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics. 1999;57(1):57–61. doi:10.1006/geno.1999.5754
  • Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28(1):92–95. doi:10.1038/ng0501-92
  • Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther. 2005;12(6):1072–1082. doi:10.1016/j.ymthe.2005.08.008
  • Lai CM, Yu MJ, Brankov M, et al. Recombinant adeno-associated virus type 2-mediated gene delivery into the knockout mouse eye results in limited rescue. Genet Vaccines Ther. 2004;2:3. doi:10.1186/1479-0556-2-3
  • Jacobson SG, Boye SL, Aleman TS, et al. Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in leber congenital amaurosis. Hum Gene Ther. 2006;17(8):845–858. doi:10.1089/hum.2006.17.845
  • Jacobson SG, Aleman TS, Cideciyan AV, et al. Identifying photoreceptors in blind eyes caused by RPE65 mutations: prerequisite for human gene therapy success. Proc Natl Acad Sci USA. 2005;102(17):6177–6182. doi:10.1073/pnas.0500646102
  • Jacobson SG, Cideciyan AV, Aleman TS, et al. Photoreceptor layer topography in children with leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci. 2008;49(10):4573–4577. doi:10.1167/iovs.08-2121
  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–2248. doi:10.1056/NEJMoa0802315
  • Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a Phase I trial. Hum Gene Ther. 2008;19(10):979–990. doi:10.1089/hum.2008.107
  • Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–2239. doi:10.1056/NEJMoa0802268
  • Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–1605. doi:10.1016/S0140-6736(09)61836-5
  • Testa F, Maguire AM, Rossi S, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with leber congenital amaurosis type 2. Ophthalmology. 2013;120(6):1283–1291. doi:10.1016/j.ophtha.2012.11.048
  • Ashtari M, Zhang H, Cook PA, et al. Plasticity of the human visual system after retinal gene therapy in patients with leber’s congenital amaurosis. Sci Transl Med. 2015;7(296):296ra110. doi:10.1126/scitranslmed.aaa8791
  • Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24. doi:10.1001/archophthalmol.2011.298
  • Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med. 2015;372(20):1920–1926. doi:10.1056/NEJMoa1412965
  • Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–1897. doi:10.1056/NEJMoa1414221
  • Weleber RG, Pennesi ME, Wilson DJ, et al. Results at 2 years after gene therapy for RPE65-deficient leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606–1620. doi:10.1016/j.ophtha.2016.03.003
  • Pennesi ME, Weleber RG, Yang P, et al. Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Hum Gene Ther. 2018;29(12):1428–1437. doi:10.1089/hum.2018.014
  • Bennett J, Ashtari M, Wellman J, et al. AAV2 gene therapy re-administration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15. doi:10.1126/scitranslmed.3002865
  • Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661–672. doi:10.1016/S0140-6736(16)30371-3
  • Chung DC, Mccague S, Yu ZF, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies. Clin Experiment Ophthalmol. 2018;46(3):247–259. doi:10.1111/ceo.13022
  • Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomized, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–860. doi:10.1016/S0140-6736(17)31868-8
  • LUXTURNATM (voretigene neparvovec-rzyl) December 19, 2017 approval letter. 2017. [cited May 5, 2020]. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM589690.pdf. Accessed October 23, 2020.
  • Maguire AM, Russell S, Wellman JA, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology. 2019;126(9):1273–1285. doi:10.1016/j.ophtha.2019.06.017
  • Drack AV, Bennett J, Russell S, et al. How long does gene therapy last? 4-year follow up of phase 3 voretigene neparvovec trial in RPE65-associated LCA/inherited retinal disease. JAAPOS. 2019;23(4):e7.
  • A Patient Registry Study for Patients Treated With Voretigene Neparvovec. [cited May 5, 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT03597399. Accessed October 23, 2020.
  • Treatment Centers. HCP support services | spark Therapeutics. [cited May 5, 2020]. Available from: http://mysparkgeneration.com/hcp-support.html#TreatmentCenters. Accessed October 23, 2020.
  • Weng CY Making history exploring luxturna gene therapy and its surgical delivery. New Retinal Physician. September, 2018. [cited May 5, 2020]. Available from: https://www.retinalphysician.com/supplements/2018/september-2018/new-retinal-physician/making-history. Accessed October 23, 2020.
  • Davis JL. The blunt end: surgical challenges of gene therapy for inherited retinal diseases. Am J Ophthalmol. 2018;196:xxv–xxix. doi:10.1016/j.ajo.2018.08.038
  • Hussain RM, Tran KD, Maguire AM, Berrocal AM. Subretinal injection of voretigene neparvovec-rzyl in a patient with RPE65-associated leber’s congenital amaurosis. Ophthalmic Surg Lasers Imaging Retina. 2019;50(10):661–663. doi:10.3928/23258160-20191009-01
  • Xue K, Groppe M, Salvetti AP, Maclaren RE. Technique of retinal gene therapy: delivery of viral vector into the subretinal space. Eye (Lond). 2017;31(9):1308–1316.
  • Johnson S, Buessing M, O’connell T, Pitluck S, Ciulla TA. Cost-effectiveness of voretigene neparvovec-rzyl vs standard care for RPE65-mediated inherited retinal disease. JAMA Ophthalmol. 2019;137(10):1115–1123. doi:10.1001/jamaophthalmol.2019.2512
  • Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today. 2019;24(4):949–954. doi:10.1016/j.drudis.2019.01.019
  • Grosse SD. Assessing cost-effectiveness in healthcare: history of the $50,000 per QALY threshold. Expert Rev Pharmacoecon Outcomes Res. 2008;8(2):165–178. doi:10.1586/14737167.8.2.165
  • Neumann PJ, Cohen JT, Weinstein MC. Updating cost-effectiveness–the curious resilience of the $50,000-per-QALY threshold. N Engl J Med. 2014;371(9):796–797. doi:10.1056/NEJMp1405158
  • Zimmermann M, Lubinga SJ, Banken R, et al. Cost utility of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Value Health. 2019;22(2):161–167. doi:10.1016/j.jval.2018.09.2841
  • Viriato D, Bennett N, Sidhu R, et al. An economic evaluation of voretigene neparvovec for the treatment of biallelic RPE65-mediated inherited retinal dystrophies in the UK. Adv Ther. 2020;37(3):1233–1247. doi:10.1007/s12325-020-01243-y
  • Spark Therapeutics Announces First-of-their-kind Programs to Improve Patient Access to LUXTURNA™ (voretigene neparvovec-rzyl), a One-time Gene Therapy Treatment. [cited May 5, 2020]. Available from: https://sparktx.com/press_releases/spark-therapeutics-announces-first-of-their-kind-programs-to-improve-patient-access-to-luxturna-voretigene-neparvovec-rzyl-a-one-time-gene-therapy-treatment/. Accessed October 23, 2020.
  • Spark Therapeutic Generation Patient Services Enrollment Form. [cited May 5, 2020]. Available from: https://www.mysparkgeneration.com/pdf/LUX2692_LUXTURNA_Enrollment_Form_P-RPE65-US-76000_12-9-19_Editable.pdf. Accessed October 23, 2020.
  • Luxturna voretigene neparvovec-rzyl for subretinal injection Statement of Medical Necessity. [cited May 5, 2020]. Available from: https://mysparkgeneration.com/pdf/LUX2693_Luxturna_SMN_Form_FIN_Editable.pdf. Accessed October 23, 2020.
  • Scimone C, Donato L, Esposito T, Rinaldi C, D’Angelo R, Sidoti A. A novel RLBP1 gene geographical area-related mutation present in a young patient with retinitis punctata albescens. Hum Genomics. 2017;11(1):18. doi:10.1186/s40246-017-0114-6
  • Donato L, D’Angelo R, Alibrandi S, Rinaldi C, Sidoti A, Scimone C. Effects of A2E-induced oxidative stress on retinal epithelial cells: new insights on differential gene response and retinal dystrophies. Antioxidants (Basel). 2020;9(4):307. doi:10.3390/antiox9040307
  • Donato L, Scimone C, Alibrandi S, et al. Discovery of GLO1 new related genes and pathways by RNA-seq on A2E-stressed retinal epithelial cells could improve knowledge on retinitis pigmentosa. Antioxidants (Basel). 2020;9(5):416. doi:10.3390/antiox9050416