502
Views
6
CrossRef citations to date
0
Altmetric
Review

Photobiomodulation Therapy for Age-Related Macular Degeneration and Diabetic Retinopathy: A Review

, &
Pages 3709-3720 | Published online: 02 Sep 2021

References

  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Heal. 2014;2(2):e106–e116. doi:10.1016/S2214-109X(13)70145-1
  • Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60(5):428–431. doi:10.4103/0301-4738.100542
  • Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (London, England). 2015;2(1):17. doi:10.1186/s40662-015-0026-2
  • Khanna S, Komati R, Eichenbaum DA, Hariprasad I, Ciulla TA, Hariprasad SM. Current and upcoming anti-VEGF therapies and dosing strategies for the treatment of neovascular AMD: a comparative review. BMJ Open Ophthalmol. 2019;4(1):e000398. doi:10.1136/bmjophth-2019-000398
  • Baker CW, Glassman AR, Beaulieu WT, et al. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA. 2019;321(19):1880–1894. doi:10.1001/jama.2019.5790
  • Bressler SB, Odia I, Glassman AR, et al. Changes in diabetic retinopathy severity when treating diabetic macular edema with ranibizumab: DRCR.net protocol I 5-year report. Retina. 2018;38(10):1896–1904. doi:10.1097/IAE.0000000000002302
  • Rojas-Fernandez CH, Tyber K. Benefits, potential harms, and optimal use of nutritional supplementation for preventing progression of age-related macular degeneration. Ann Pharmacother. 2017;51(3):264–270. doi:10.1177/1060028016680643
  • Mukhtar S, Ambati BK. The value of nutritional supplements in treating age-related macular degeneration: a review of the literature. Int Ophthalmol. 2019;39(12):2975–2983. doi:10.1007/s10792-019-01140-6
  • Eells JT, Henry MM, Summerfelt P, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003;100(6):3439–3444. doi:10.1073/pnas.0534746100
  • Eells JT, Gopalakrishnan S, Valter K. Near-infrared photobiomodulation in retinal injury and disease. Adv Exp Med Biol. 2016;854:437–441. doi:10.1007/978-3-319-17121-0_58
  • Ao J, Wood JP, Chidlow G, Gillies MC, Casson RJ. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Experiment Ophthalmol. 2018;46(6):670–686. doi:10.1111/ceo.13121
  • Geneva II. Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol. 2016;9(1):145–152. doi:10.18240/ijo.2016.01.24
  • Heinig N, Schumann U, Calzia D, et al. Photobiomodulation mediates neuroprotection against blue light induced retinal photoreceptor degeneration. Int J Mol Sci. 2020;21(7):7. doi:10.3390/ijms21072370
  • Muste JC, Kalur A, Iyer A, Valentim CCS, Singh RP. Photobiomodulation therapy in age-related macular degeneration. Curr Opin Ophthalmol. 2021;32(3):225–232. doi:10.1097/ICU.0000000000000742
  • Tao J-X, Zhou W-C, Zhu X-G. Mitochondria as potential targets and initiators of the blue light hazard to the retina. Oxid Med Cell Longev. 2019;2019:6435364. doi:10.1155/2019/6435364
  • Wong-Riley MTT, Liang HL, Eells JT, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280(6):4761–4771. doi:10.1074/jbc.M409650200
  • Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B. 2005;81(2):98–106. doi:10.1016/j.jphotobiol.2005.07.002
  • de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quant Elect. 2016;22:3. doi:10.1109/JSTQE.2016.2561201
  • Calaza KC, Kam JH, Hogg C, Jeffery G. Mitochondrial decline precedes phenotype development in the complement factor H mouse model of retinal degeneration but can be corrected by near infrared light. Neurobiol Aging. 2015;36(10):2869–2876. doi:10.1016/j.neurobiolaging.2015.06.010
  • Rutar M, Natoli R, Albarracin R, Valter K, Provis J. 670-nm light treatment reduces complement propagation following retinal degeneration. J Neuroinflammation. 2012;9:257. doi:10.1186/1742-2094-9-257
  • Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343–358. doi:10.1016/j.preteyeres.2011.05.002
  • Shen W, Teo KYC, Wood JPM, et al. Preclinical and clinical studies of photobiomodulation therapy for macular oedema. Diabetologia. 2020;63(9):1900–1915. doi:10.1007/s00125-020-05189-2
  • Saliba A, Du Y, Liu H, et al. Photobiomodulation mitigates diabetes-induced retinopathy by direct and indirect mechanisms: evidence from intervention studies in pigmented mice. PLoS One. 2015;10(10):e0139003. doi:10.1371/journal.pone.0139003
  • Begum R, Powner MB, Hudson N, Hogg C, Jeffery G. Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS One. 2013;8(2):e57828. doi:10.1371/journal.pone.0057828
  • Tang J, Du Y, Lee CA, Talahalli R, Eells JT, Kern TS. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro. Invest Ophthalmol Vis Sci. 2013;54(5):3681–3690. doi:10.1167/iovs.12-11018
  • Kokkinopoulos I. 670 nm LED ameliorates inflammation in the CFH(-/-) mouse neural retina. J Photochem Photobiol B. 2013;122:24–31. doi:10.1016/j.jphotobiol.2013.03.003
  • Albarracin R, Valter K. 670 nm red light preconditioning supports Müller cell function: evidence from the white light-induced damage model in the rat retina. Photochem Photobiol. 2012;88(6):1418–1427. doi:10.1111/j.1751-1097.2012.01130.x
  • Fuma S, Murase H, Kuse Y, Tsuruma K, Shimazawa M, Hara H. Photobiomodulation with 670 nm light increased phagocytosis in human retinal pigment epithelial cells. Mol Vis. 2015;21:883–892.
  • Natoli R, Zhu Y, Valter K, Bisti S, Eells J, Stone J. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol Vis. 2010;16:1801–1822.
  • Di Marco F, Romeo S, Nandasena C, et al. The time course of action of two neuroprotectants, dietary saffron and photobiomodulation, assessed in the rat retina. Am J Neurodegener Dis. 2013;2(3):208–220.
  • Cheng Y, Du Y, Liu H, Tang J, Veenstra A, Kern TS. Photobiomodulation inhibits long-term structural and functional lesions of diabetic retinopathy. Diabetes. 2018;67(2):291–298. doi:10.2337/db17-0803
  • Eells J, Gopalakrishnan S, Connor T, et al. 670 nm photobiomodulation as a therapy for diabetic macular edema: a pilot study. Poster presented at: 2017 ARVO Annual Meeting; May 7-11, 2017; Baltimore, MD.,
  • Tang J, Herda AA, Kern TS. Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. Br J Ophthalmol. 2014;98(8):1013–1015. doi:10.1136/bjophthalmol-2013-304477
  • Kim J. A Pilot study evaluating photobiomodulation therapy for diabetic Macular Edema (AE) ClinicalTrials.gov Identifier: NCT03866473. Other Study ID Numbers: DRCR.netProtocol AE; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03866473. Accessed: July 19, 2020.
  • Bristlecone Health, Inc. Photobiomodulation & ketogenic diet for treatment of mid-periphery retinal disorders for Alzheimer’s disease prevention. ClinicalTrials.gov Identifier: NCT03859245; 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03859245. Accessed May 30, 2021.
  • Kim J. Photobiomodulation for the Treatment of Diabetic Macular Edema (PTDME). ClinicalTrials.gov Identifier: NCT02457975; 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02457975. Accessed May 30, 2021.
  • Eells JT. Mitochondrial dysfunction in the aging retina. Biology (Basel). 2019;8:2. doi:10.3390/biology8020031
  • Ennis S, Gibson J, Cree AJ, Collins A, Lotery AJ. Support for the involvement of complement factor I in age-related macular degeneration. Eur J Hum Genet. 2010;18(1):15–16. doi:10.1038/ejhg.2009.113
  • Keenan TDL, Clemons TE, Domalpally A, et al. Retinal specialist versus artificial intelligence detection of retinal fluid from OCT: age-related eye disease study 2: 10-year follow-on study. Ophthalmology. 2021;128(1):100–109. doi:10.1016/j.ophtha.2020.06.038
  • Ivandic BT, Ivandic T. Low-level laser therapy improves vision in patients with age-related macular degeneration. Photomed Laser Surg. 2008;26(3):241–245. doi:10.1089/pho.2007.2132
  • Merry G, Dotson R, Devenyi R, Markowitz SRS. Photobiomodulation as a new treatment for dry age related macular degeneration RESULTS from the Toronto and Oak Ridge Photobimodulation study in AMD (TORPA). Invest Ophthalmol Vis Sci. 2012;53:2049.
  • Merry GF, Munk MR, Dotson RS, Walker MG, Devenyi RG. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol. 2017;95(4):e270–e277. doi:10.1111/aos.13354
  • Markowitz SN, Devenyi RG, Munk MR, et al. A double-masked, randomized, sham-controlled, single-center study with photobiomodulation for the treatment of dry age-related macular degeneration. Retina. 2019;40:1471. doi:10.1097/IAE.0000000000002632
  • Pinelli R. Photobiomodulation Shows the Power of Light: study results demonstrate effectiveness in treating dry-age related macular degeneration. Ophthalmol Times. 2020;45(13).
  • Kaymak H, Schwahn H Photobiomodulation as a treatment in dry AMD. Retina Today: May/June Special Edition; 2020. Available from: https://retinatoday.com/articles/2020-may-june/photobiomodulation-as-a-treatment-in-dry-amd. Accessed May 30, 2021.
  • LumiThera, Inc., Study of photobiomodulation to treat non-exudative age-related macular degeneration (LIGHTSITE II). ClinicalTrials.gov Identifier: NCT03878420; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03878420. Accessed July 19, 2020.
  • LumiThera, Inc. Study of photobiomodulation to treat non-exudative age-related macular degeneration (LIGHTSITE III). ClinicalTrials.gov Identifier: NCT04065490; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04065490. Accessed July 19, 2020.
  • LumiThera, Inc.Study of photobiomodulation effect on electroretinogram outcomes in dry age-related macular degeneration (ELECTROLIGHT). ClinicalTrials.gov Identifier: NCT04522999; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04522999. Accessed October 19, 2020.
  • Grewal MK, Sivapathasuntharam C, Chandra S, et al. A pilot study evaluating the effects of 670 nm photobiomodulation in healthy ageing and age-related macular degeneration. J Clin Med. 2020;9(4):1001. doi:10.3390/jcm9041001
  • Samanta A, Aziz AA, Jhingan M, et al. Emerging therapies in nonexudative age-related macular degeneration in 2020. Asia Pac J Ophthalmol. 2021. doi:10.1097/APO.0000000000000355