207
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Associations of ARMS2 and CFH Gene Polymorphisms with Neovascular Age-Related Macular Degeneration

ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon & show all
Pages 1101-1108 | Published online: 11 Mar 2021

References

  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–e116. doi:10.1016/S2214-109X(13)70145-1
  • Yonekawa Y, Kim IK. Clinical characteristics and current treatment of age-related macular degeneration. Cold Spring Harb Perspect Med. 2015;5(1):a017178. doi:10.1101/cshperspect.a017178
  • Schwartz SG, Hampton BM, Kovach JL, Brantley MA. Genetics and age-related macular degeneration: a practical review for the clinician. Clin Ophthalmol. 2016;10:1229–1235. doi:10.2147/OPTH.S109723
  • Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–389. doi:10.1126/science.1109557
  • Fritsche LG, Igl W, Bailey JNC, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48(2):134–143. doi:10.1038/ng.3448
  • Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genom Hum Genet. 2014;15(1):151–171. doi:10.1146/annurev-genom-090413-025610
  • Parmeggiani F, Sorrentino FS, Romano MR, et al. Mechanism of inflammation in age-related macular degeneration: an up-to-date on genetic landmarks. Mediators Inflamm. 2013;2013:1–13. doi:10.1155/2013/435607
  • Bonyadi MHJ, Yaseri M, Soheilian M. Association of combined complement factor H Y402H and ARMS2/LOC387715 A69S polymorphisms with age-related macular degeneration: an updated meta-analysis. Ophthalmic Genet. 2020;1–7. doi:10.1080/13816810.2020.1765396
  • Bonyadi MHJ, Yaseri M, Nikkhah H, Bonyadi M, Soheilian M. Association of risk genotypes of ARMS2/LOC387715 A69S and CFH Y402H with age-related macular degeneration with and without reticular pseudodrusen: a meta-analysis. Acta Ophthalmol. 2018;96(2):e105–e110. doi:10.1111/aos.13494
  • Kanda A, Chen W, Othman M, et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A. 2007;104(41):16227–16232. doi:10.1073/pnas.0703933104
  • Wang G, Spencer KL, Court BL, et al. Localization of age-related macular degeneration-associated ARMS2 in cytosol, not mitochondria. Invest Ophthalmol Vis Sci. 2009;50(7):3084–3090. doi:10.1167/iovs.08-3240
  • Grassmann F, Heid IM, Weber BHF. Recombinant haplotypes narrow the ARMS2/HTRA1 association signal for age-related macular degeneration. Genetics. 2017;205(2):919–924. doi:10.1534/genetics.116.195966
  • Hadley D, Orlin A, Brown G, et al. Analysis of six genetic risk factors highly associated with AMD in the region surrounding ARMS2 and HTRA1 on chromosome 10, region q26. Invest Ophthalmol Vis Sci. 2010;51(4):2191–2196. doi:10.1167/iovs.09-3798
  • Ricci F, Zampatti S, D’Abbruzzi F, et al. Typing of ARMS2 and CFH in age-related macular degeneration: case-control study and assessment of frequency in the Italian population. Arch Ophthalmol. 2009;127(10):1368–1372. doi:10.1001/archophthalmol.2009.237
  • Gotoh N, Nakanishi H, Hayashi H, et al. ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am J Ophthalmol. 2009;147(6):1037–1041.e2. doi:10.1016/j.ajo.2008.12.036
  • Fritsche LG, Loenhardt T, Janssen A, et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet. 2008;40(7):892–896. doi:10.1038/ng.170
  • Iejima D, Itabashi T, Kawamura Y, et al. HTRA1 (high temperature requirement a serine peptidase 1) gene is transcriptionally regulated by insertion/deletion nucleotides located at the 3′ end of the ARMS2 (age-related maculopathy susceptibility 2) gene in patients with age-related macular degeneration. J Biol Chem. 2015;290(5):2784–2797. doi:10.1074/jbc.M114.593384
  • Vavvas DG, Small KW, Awh CC, Zanke BW, Tibshirani RJ, Kustra R. CFH and ARMS2 genetic risk determines progression to neovascular age-related macular degeneration after antioxidant and zinc supplementation. Proc Natl Acad Sci USA. 2018;115(4):E696–E704. doi:10.1073/pnas.1718059115
  • Lechanteur YTE, van de Camp PL, Smailhodzic D, et al. Association of smoking and CFH and ARMS2 risk variants with younger age at onset of neovascular age-related macular degeneration. JAMA Ophthalmol. 2015;133(5):533–541. doi:10.1001/jamaophthalmol.2015.18
  • Smailhodzic D, Klaver CCW, Klevering BJ, et al. Risk alleles in CFH and ARMS2 are independently associated with systemic complement activation in age-related macular degeneration. Ophthalmology. 2012;119(2):339–346. doi:10.1016/j.ophtha.2011.07.056
  • Brión M, Sanchez‐Salorio M, Cortón M, et al. Genetic association study of age-related macular degeneration in the Spanish population. Acta Ophthalmol. 2011;89(1):e12–e22. doi:10.1111/j.1755-3768.2010.02040.x
  • Wang G, Spencer KL, Scott WK, et al. Analysis of the indel at the ARMS2 3′UTR in age-related macular degeneration. Hum Genet. 2010;127(5):595–602. doi:10.1007/s00439-010-0805-8
  • Zysset-Burri DC, Keller I, Berger LE, et al. Associations of the intestinal microbiome with the complement system in neovascular age-related macular degeneration. NPJ Genom Med. 2020;5(1):1–11. doi:10.1038/s41525-020-00141-0
  • Sundaresan P, Vashist P, Ravindran RD, et al. Polymorphisms in ARMS2/HTRA1 and complement genes and age-related macular degeneration in India: findings from the INDEYE study. Invest Ophthalmol Vis Sci. 2012;53(12):7492. doi:10.1167/iovs.12-10073
  • Yasuma TR, Nakamura M, Nishiguchi KM, et al. Elevated C-reactive protein levels and ARMS2/HTRA1 gene variants in subjects without age-related macular degeneration. Mol Vis. 2010;16:2923.
  • Hayashi H, Yamashiro K, Gotoh N, et al. CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest Ophthalmol Vis Sci. 2010;51(11):5914–5919. doi:10.1167/iovs.10-5554
  • Zhuang W, Li H, Liu Y, et al. Association of specific genetic polymorphisms with age-related macular degeneration in a Northern Chinese population. Ophthalmic Genet. 2014;35(3):156–161. doi:10.3109/13816810.2014.921314
  • Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv Ophthalmol. 1995;39(5):367–374. doi:10.1016/S0039-6257(05)80092-X
  • Ferris FL, Wilkinson CP, Bird A, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844–851. doi:10.1016/j.ophtha.2012.10.036
  • Ruamviboonsuk P, Tadarati M, Singhanetr P, et al. Genome-wide association study of neovascular age-related macular degeneration in the Thai population. J Hum Genet. 2017;62(11):957–962. doi:10.1038/jhg.2017.72
  • Cheung CMG, Laude A, Yeo I, et al. Systemic, ocular and genetic risk factors for age-related macular degeneration and polypoidal choroidal vasculopathy in Singaporeans. Sci Rep. 2017;7. doi:10.1038/srep41386
  • Rajendran A, Dhoble P, Sundaresan P, et al. Genetic risk factors for late age-related macular degeneration in India. Br J Ophthalmol. 2018;102(9):1213–1217. doi:10.1136/bjophthalmol-2017-311384
  • Mohamad NA, Ramachandran V, Mohd Isa H, et al. Association of HTRA1 and ARMS2 gene polymorphisms with response to intravitreal ranibizumab among neovascular age-related macular degenerative subjects. Hum Genomics. 2019;13. doi:10.1186/s40246-019-0197-3
  • Xu Y, Guan N, Xu J, et al. Association of CFH, LOC387715, and HTRA1 polymorphisms with exudative age-related macular degeneration in a northern Chinese population. Mol Vis. 2008;14:1373.
  • Cheng Y, Huang L, Li X, Zhou P, Zeng W, Zhang C. Genetic and functional dissection of ARMS2 in age-related macular degeneration and polypoidal choroidal vasculopathy. Lee H-C, ed. PLoS One. 2013;8(1):e53665. doi:10.1371/journal.pone.0053665
  • Yanagisawa S, Kondo N, Miki A, et al. Difference between age-related macular degeneration and polypoidal choroidal vasculopathy in the hereditary contribution of the A69S variant of the age-related maculopathy susceptibility 2 gene (ARMS2). Mol Vis. 2011;17:3574–3582.
  • Aoki A, Tan X, Yamagishi R, et al. Risk factors for age-related macular degeneration in an elderly Japanese population: the Hatoyama Study. Invest Ophthalmol Vis Sci. 2015;56(4):2580–2585. doi:10.1167/iovs.14-16339
  • Lee SJ, Kim NR, Chin HS. LOC387715/HTRA1 polymorphisms, smoking and combined effects on exudative age-related macular degeneration in a Korean population. Clin Experiment Ophthalmol. 2010;38(7):698–704. doi:10.1111/j.1442-9071.2010.02316.x
  • Chakravarthy U, McKay GJ, de Jong PTVM, et al. ARMS2 increases the risk of early and late age-related macular degeneration in the European eye study. Ophthalmology. 2013;120(2):342–348. doi:10.1016/j.ophtha.2012.08.004
  • Jabbarpoor Bonyadi MH, Yaseri M, Nikkhah H, Bonyadi M, Nazari R, Soheilian M. Comparison of ARMS2/LOC387715 A69S and CFH Y402H risk effect in wet-type age-related macular degeneration: a meta-analysis. Int Ophthalmol. 2019;39(4):949–956. doi:10.1007/s10792-018-0853-y
  • Kaur I, Cantsilieris S, Katta S, et al. Association of the del443ins54 at the ARMS2 locus in Indian and Australian cohorts with age-related macular degeneration. Mol Vis. 2013;19:822–828.
  • Restrepo NA, Spencer KL, Goodloe R, et al. Genetic determinants of age-related macular degeneration in diverse populations from the PAGE study. Invest Ophthalmol Vis Sci. 2014;55(10):6839–6850. doi:10.1167/iovs.14-14246
  • Goverdhan SV, Hannan S, Newsom RB, Luff AJ, Griffiths H, Lotery AJ. An analysis of the CFH Y402H genotype in AMD patients and controls from the UK, and response to PDT treatment. Eye. 2007;22(6):849–854. doi:10.1038/sj.eye.6702830
  • Matušková V, Zeman T, Ewerlingová L, et al. An association of neovascular age-related macular degeneration with polymorphisms of CFH, ARMS2, HTRA1 and C3 genes in Czech population. Acta Ophthalmol. 2020;98:e691–e699. doi:10.1111/aos.14357
  • Gotoh N, Yamada R, Hiratani H, et al. No association between complement factor H gene polymorphism and exudative age-related macular degeneration in Japanese. Hum Genet. 2006;120(1):139–143. doi:10.1007/s00439-006-0187-0
  • Okamoto H, Umeda S, Obazawa M, et al. Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol Vis. 2006;12:156–158.
  • Uka J, Tamura H, Kobayashi T, et al. No association of complement factor H gene polymorphism and age-related macular degeneration in the Japanese population. Retina. 2006;26(9):985–987. doi:10.1097/01.iae.0000244068.18520.3e
  • Chen LJ, Liu DTL, Tam POS, et al. Association of complement factor H polymorphisms with exudative age-related macular degeneration. Mol Vis. 2006;12:1536–1542.
  • Lau L-I, Chen S-J, Cheng C-Y, et al. Association of the Y402H polymorphism in complement factor H gene and neovascular age-related macular degeneration in Chinese patients. Invest Ophthalmol Vis Sci. 2006;47(8):3242. doi:10.1167/iovs.05-1532
  • Micklisch S, Lin Y, Jacob S, et al. Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator. J Neuroinflammation. 2017;14. doi:10.1186/s12974-016-0776-3
  • Yang J, Li Y, Chan L, et al. Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum Mol Genet. 2014;23(13):3445–3455. doi:10.1093/hmg/ddu053
  • Saini JS, Corneo B, Miller JD, et al. Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular degeneration. Cell Stem Cell. 2017;20(5):635–647.e7. doi:10.1016/j.stem.2016.12.015
  • Feng C, Krogh Nielsen M, Sørensen TL, Subhi Y. Systemic levels of C-reactive protein in patients with age-related macular degeneration: a systematic review with meta-analyses. Mech Ageing Dev. 2020;191:111353. doi:10.1016/j.mad.2020.111353
  • Hyman L, Schachat AP, He Q, Leske M. Hypertension, cardiovascular disease, and age-related macular degeneration. Arch Ophthalmol. 2000;118(3):351–358. doi:10.1001/archopht.118.3.351
  • Chaikitmongkol V, Kong J, Khunsongkiet P, et al. Sensitivity and specificity of potential diagnostic features detected using fundus photography, optical coherence tomography, and fluorescein angiography for polypoidal choroidal vasculopathy. JAMA Ophthalmol. 2019;137(6):661–667. doi:10.1001/jamaophthalmol.2019.0565
  • Liu R, Li J, Li Z, et al. Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography. Retina. 2016;36(4):778–786. doi:10.1097/IAE.0000000000000794
  • Cheung CMG, Lai TYY, Teo K, et al. Polypoidal choroidal vasculopathy: consensus nomenclature and non–indocyanine green angiograph diagnostic criteria from the Asia-pacific ocular imaging society PCV workgroup. Ophthalmology. 2020. doi:10.1016/j.ophtha.2020.08.006
  • Mowatt G, Hernández R, Castillo M, et al. Assessment of Diagnostic and Monitoring Studies. NIHR Journals Library; 2014. Available from: https://www.ncbi.nlm.nih.gov/books/NBK263940/. Accessed July 6, 2020.
  • Sandhu SS, Talks SJ. Correlation of optical coherence tomography, with or without additional colour fundus photography, with stereo fundus fluorescein angiography in diagnosing choroidal neovascular membranes. Br J Ophthalmol. 2005;89(8):967–970. doi:10.1136/bjo.2004.060863
  • Wilde C, Patel M, Lakshmanan A, Amankwah R, Dhar-Munshi S, Amoaku W. The diagnostic accuracy of spectral-domain optical coherence tomography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography. Eye. 2015;29(5):602–610. doi:10.1038/eye.2015.44