419
Views
10
CrossRef citations to date
0
Altmetric
Perspectives

The 25th Anniversary of Laser Vision Correction in the United States

ORCID Icon
Pages 1163-1172 | Published online: 17 Mar 2021

References

  • Partal AE, Manche EE. CustomVue laser in situ keratomileusis for myopia and myopic astigmatism using the Visx S4 excimer laser: efficacy, predictability, and safety. J Cat Refract Surg. 2006;32(3):475–479. doi:10.1016/j.jcrs.2005.12.128
  • Sekundo W, Bonicke K, Mattausch P, Wiegand W. Six year follow-up of laser in situ keratomileusis for moderate and extreme myopia using a first-generation excimer laser and microkeratome. J Cat Refract Surg. 2003;29:1152–1158. doi:10.1016/S0886-3350(03)00062-2
  • Ibrahim O. Laser in situ keratomileusis for hyperopia and hyperopic astigmatism. J Cat Refract Surg. 1998;14:S179–S182.
  • Schallhorn SCS, Farjo AA, Huang D, et al. Wavefront-Guided LASIK for the correction of primary myopia and astigmatism. Am Acad Ophthalmol. 2008;115:1249–1261.
  • Lim T, Yang S, Kim M, Tchah H. Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. Ameri J Ophthalmol. 2006;141:833–839. doi:10.1016/j.ajo.2005.12.032
  • Manche EE, Carr JD, Haw WW, Hersh PS. Excimer laser refractive surgery. West J Medi. 1988;169(1):30–38.
  • Salah T, Waring GO, El Maghraby A, Moadel K, Grimm SB. Excimer laser in situ keratomileusis under a corneal flap for myopia of 2 to 20 diopters. Amer J Ophthalmol. 1996;121(2):143–155. doi:10.1016/S0002-9394(14)70578-1
  • Probst LE, Machat JJ. Mathematics of laser in situ keratomileusis for high myopia. J Cat Refract Surg. 1998;24(2):190–195. doi:10.1016/S0886-3350(98)80199-5
  • McDonald MB, Kaufman HE, Frantz JM, Shofner S, Salmeron B, Klyce SD. Case Report: excimer laser ablation in a human eye. Arch Ophthal. 1989;107(5):641–642. doi:10.1001/archopht.1989.01070010659013
  • Sutton G, Lawless M, Hodge C. Laser in situ keratomileusis in 2012: a review. Clin Exp Optom. 2014;97(1):18–29. doi:10.1111/cxo.12075
  • Patel SV, Maguire LJ, McLaren JW, Hodge DO, Bourne WM. Femtosecond laser versus mechanical microkeratome for LASIK: a randomized controlled study. Ophthalmol. 2007;114(8):1482–1490. doi:10.1016/j.ophtha.2006.10.057
  • Xia LK, Yu J, Chai GR, Wang D, Li Y. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK. Inter J Ophthalmol. 2015;8(4):784–790.
  • Pajic B, Vastardis I, Pajic-Eggspuehler B, Gatzioufas Z, Hafezi F. Femtosecond laser versus mechanical microkeratome-assisted flap creation for LASIK: a prospective, randomized, paired-eye study. Clin Ophthalmol. 2014(8):1883–1889.
  • Jones C. Refractive Surgery Market Report. MarketScope. 2019;2020:1–283.
  • Harmon D. US Refractive Quarterly Update. MarketScope. 2020;1–23.
  • Aggarwal S, Jain P, Jain A. Covid-19 and cataract surgery backlog in Medicare beneficiaries. J Cat Refract Surg. 2020;46(11):1530–1533. doi:10.1097/j.jcrs.0000000000000337
  • Pesudovs K, Garamendi E, Elliot DB. A quality of life comparison of people wearing spectacles or contact lenses or having undergone refractive surgery. J Refract Surg. 2006;22(1):19–27. doi:10.3928/1081-597X-20060101-07
  • Tran K, Ryce A Laser refractive surgery for vision correction: a review of clinical effectiveness and cost-effectiveness Available from: https://www.cadth.ca/sites/default/files/pdf/htis/2018/RC0992%20Laser%20Refractive%20Surgery%20for%20Vision%20Correction%20Final.pdf. Canadian Agency for Drugs and Technologies in Health; Ottawa (ON). Accessed January 26, 2021.
  • McAlinden C. Corneal refractive surgery: past to present. Clin and Exper Optom. 2012;95(4):386–398. doi:10.1111/j.1444-0938.2012.00761.x
  • FDA-Approved Lasers for PRK and Other Refractive Surgeries; 2021. Available from: https://www.fda.gov/medical-devices/LASIK/fda-approved-lasers-prk-and-other-refractive-surgeries. Accessed January 28, 2021.
  • Wilksinson JM, Cozine EW, Kahn AR. Refractive eye surgery: helping patients make informed decisions about LASIK. Amer Fam Phy. 2017;95(10):637–644.
  • Payvar S, Hashemi H. Laser in situ keratomileusis for myopic astigmatism with the Nidek EC-5000 laser. J Refract Surg. 2002;18(3):225–233.
  • Reviglio VE, Bossana EL, Luna JD, Muiño JC, Juarez CP. Laser in situ keratomileusis for myopia and hyperopia using the Lasersight 200 laser in 300 consecutive eyes. J Refract Surg. 2000;16(6):716–723.
  • Khoramnia R, Salgado JP, Wuellner C, Donitzky C, Lohmann CP, Winkler von Mohrenfels C. Safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser. Acta Ophthalmol. 2012;90(6):508–513. doi:10.1111/j.1755-3768.2010.02052.x
  • Lee JY, Youm DJ, Choi CY. Conventional Epi-LASIK and lamellar epithelial debridement in myopic patients with dermatologic keloids. Kor Jnl of Ophthal. 2011;25(3):206–209. doi:10.3341/kjo.2011.25.3.206
  • Teus MA, de Benito-llopis L, Garcia-González M. Comparison of visual results between laser-assisted subepithelial keratectomy and epipolis laser in situ keratomileusis to correct myopia and myopic astigmatism. Amer J Ophthalmol. 2008;146(3):357–362. doi:10.1016/j.ajo.2008.05.022
  • Moshirfar M, Shah TJ, Skanchy DF, Linn SH, Kang P, Durrie DS. Comparison and analysis of FDA reported visual outcomes of the three latest platforms for LASIK: wavefront guided Visx iDesign, topography guided WaveLight Allegro Contoura, and topography guided Nidek EC-5000 CATz. Clin Ophthal. 2017;11:135–147. doi:10.2147/OPTH.S115270
  • El Awady HE, Ghanem AA, Saleh SM. Wavefront-optimized ablation versus topography-guided customized ablation in myopic LASIK: comparative study of higher order aberrations. Ophthalmic Surgery. 2011;42(4):314–320. doi:10.3928/15428877-20110421-01
  • Shehadeh MM, Akkawi MT, Aghbar AA, et al. Outcomes of Wavefront-Optimized Laser-Assisted In-Situ Keratomileusis and Photorefractive Keratectomy for correction of Myopia and Myopic Astigmatism over One Year Follow-Up. Open Ophthalmol J. 2018;12(1):256–263. doi:10.2174/1874364101812010256
  • Artini W, Riyanto B, Hutauruk JA, D. Gondhowiardjo T, Kekalih A. Predictive factors for successful high myopia treatment using high-frequency laser-in-situ keratomileusis. Open Ophthal Jnl. 2018;12(1):214–225. doi:10.2174/1874364101812010214
  • Motwani M, Pei R. Treatment of moderate-to-high hyperopia with the WaveLight Allegretto 400 and EX500 excimer laser systems. Clin Ophthal. 2017;11:999–1007. doi:10.2147/OPTH.S136061
  • Xia LK, Maj LHN, Shi C, Huang Q. Three-year results of small incision lenticule extraction and wavefront-guided femtosecond laser-assisted laser in situ keratomileusis for correction of high myopia and myopic astigmatism. Inter Ophthal. 2018;11(3):470–477.
  • Shah R. History and Results; Indications and Contraindications of SMILE Compared With LASIK. The Asia-Pacific J Ophthal. 2019;8(5):371–376. doi:10.1097/01.APO.0000580132.98159.fa
  • Chiam NPY, Mehta JS. Comparing patient-reported outcomes of laser in situ keratomileusis and small-incision lenticule extraction: a review. Asia Pacific J Ophthal. 2019;8(5):377–384. doi:10.1097/APO.0000000000000258
  • Kanellopoulos AJ. Topography-Guided LASIK Versus Small Incision Lenticule Extraction (SMILE) for Myopia and Myopic Astigmatism: a Randomized, Prospective, Contralateral Eye Study. J Refract Surg. 2017;33(5):306–312. doi:10.3928/1081597X-20170221-01
  • Kymionis GD, Grentzelos MA, Kalyvianaki MI, et al. Fifteen-year follow-up after anterior changer phakic intraocular lens implantation in one and LASIK in the fellow eye. Semin Ophthalmol. 2009;24(6):231–233. doi:10.3109/08820530903388751
  • Tsiklis NS, Kymionis GD, Kap CL, Naoumidi T, Pallikaris AI. Nine-year follow-up of a posterior chamber phakic IOL in one eye and LASIK in the fellow eye of the same patient. J Refract S. 2007;23(9):935–937. doi:10.3928/1081-597X-20071101-12
  • Hammond MD, Madigan JWP, Bower KS. Refractive surgery in the United States Army, 2000–2003. Ophthal. 2005;112:184–190. doi:10.1016/j.ophtha.2004.08.014
  • Solomon KD, Fernandez LE, Sandoval HP, et al. LASIK World Literature Review Quality of life and patient satisfaction. Ophthal. 2009;116(4):691–701. doi:10.1016/j.ophtha.2008.12.037
  • Toda I. Dry Eye After LASIK. Invest Ophthal Vis Scie. 2018;59(14):109–115. doi:10.1167/iovs.17-23538
  • Jun I, Jung JW, Choi YJ, Kim TI, Seo KY, Kim EK. Long-term clinical outcomes of phototherapeutic keratectomy in corneas with granular corneal dystrophy type 2 exacerbated after LASIK. J Refract Surg. 2018;34(20):132–139. doi:10.3928/1081597X-20171220-01
  • Alió JL, Ortiz D, Muftuoglu O, Garcia MJ. Ten years after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) for moderate to high myopia (control-matched study). Brit Ophthal. 2009;93(10):1313–1318. doi:10.1136/bjo.2007.131748
  • Xie W. Recent advances in laser in situ keratomileusis-associated dry eye. Clinic Exper Optom. 2016;99(2):107–112. doi:10.1111/cxo.12361
  • Toda I, Asano-Kato N, Tsubota K. Dry eye after laser in situ keratomileusis. Am J Ophthalmol. 2001;132(1):1–7. doi:10.1016/S0002-9394(01)00959-X
  • De Paiva CS, Chen Z, Koch DD, et al. The incidence and risk factors for developing dry eye after myopic LASIK. Am J Ophthalmol. 2006;141(3):438–445. doi:10.1016/j.ajo.2005.10.006
  • Yu EY, Leung A, Rao S, Lam DS. Effect of laser in situ keratomileusis on tear stability. Ophthal. 2000;107(12):2131–2135. doi:10.1016/S0161-6420(00)00388-2
  • Ting DSJ, Srinivasan S, Danjoux JP. Epithelial ingrowth following laser in situ keratomileusis (LASIK): prevalence, risk factors, management and visual outcomes. BMJ Open Ophthalmol. 2018;3(1):e000133. doi:10.1136/bmjophth-2017-000133
  • Smith RJ, Maloney RK. Diffuse lamellar keratitis. A new syndrome in lamellar refractive surgery. Ophthalmol. 1998;105(9):1721–1726. doi:10.1016/S0161-6420(98)99044-3
  • AlQahtani BS, Alshahrani S, Khayyat WW, et al. Outcomes of corneal topography among progressive keratoconus Patients 12 months following Corneal Collagen Cross-Linking. Dove Press. 2021;2021(15):49–55.
  • Giri P, Aza DT. Risk profiles of ectasia after keratorefractive surgery. Curr Opin Ophthalmol. 2017;28(4):337–342. doi:10.1097/ICU.0000000000000383
  • Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T. Corneal collagen crosslinking with riboflavin and ultraviolet a to treat induced keratectasia after laser in situ keratomileusis. J Cat Refract Surg. 2007;33(12):3025. doi:10.1016/j.jcrs.2007.07.028
  • Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Opthal. 2008;115(1):37–50. doi:10.1016/j.ophtha.2007.03.073
  • Randleman JB, Trattler WB, Stulting RD. Validation of the Ectasia Risk Score System for preoperative laser in situ keratomileusis screening. Am J Ophthal. 2008;145(5):813–818. doi:10.1016/j.ajo.2007.12.033
  • Ong HS, Farook M, Tn BBC, Williams GP, Santhiago MR, Mehta JS. Corneal ectasia risk and percentage tissue altered in myopic patients presenting for refractive surgery. Clin Ophthal. 2019;13:2003–2015. doi:10.2147/OPTH.S215144
  • Pallikaris IG, Kymionis GD, Astyrakakis NI. Corneal ectasia induced by laser in situ keratomileusis. J Cat Refract Surg. 2001;27(11):1796–1802. doi:10.1016/S0886-3350(01)01090-2
  • Mazzotta C, Sgheri A, Bagaglia A, Rechichi M, Di Maggio A. Customized corneal crosslinking for treatment of progressive keratoconus: clinical and OCT outcomes using a transepithelial approach with supplemental oxygen. J Cat Refract Surg. 2020;46(12):1582–1587. doi:10.1097/j.jcrs.0000000000000347
  • Wan Q, Wang D, Ye H, Tang J, Han Y. A review and meta-analysis of corneal cross-linking for post-laser vision correction ectasia. J Curr Ophthalmol. 2017;29:145–153. doi:10.1016/j.joco.2017.02.008
  • Ophthalmic Mutual Insurance Company (OMIC) Homepage/Website. Available from: https://www.omic.com. Accessed February 1, 2021.
  • Sugar A, Hood C, Mian S. Patient-reported outcomes following LASIK: quality of Life in the PROWL Studies. JAMA. 2017;317(2):204–205. doi:10.1001/jama.2016.19323
  • Clayton JA, Eydelman M, Vitale S, et al. Web-based versus paper administration of common ophthalmic questionnaires: comparison of subscale scores. Ophthal. 2013;120(10):2141–2159. doi:10.1016/j.ophtha.2013.03.019
  • Tarver M, Hilmantel G, Eydelman M. FDA Efforts: patient Perspective on LASIK. Rev Cornea Contact Lenses. 2017;1–5.
  • Hays RD, Tarver ME, Spritzer KL, et al. Assessment of the Psychometric Properties of a Questionnaire Assessing Patient-Reported Outcomes With Laser In Situ Keratomileusis (PROWL). JAMA Ophthalmol. 2017;135(1):3–12. doi:10.1001/jamaophthalmol.2016.4597
  • Eydelman MB, Tarver ME, Ferris III F. Listening to the patients – the Laser-Assisted In Situ Keratomileusis Quality of Life Collaboration Project. JAMA. 2017;135(2):83–84.
  • Berdeaux G, Alio J, Martinez J-M, Magaz S, Badia X. Socioeconomic aspects of laser in situ keratomileusis, spectacles, and contact lenses in mild to moderate myopia. J Cat Refract Surg. 2002;28:1914–1923. doi:10.1016/S0886-3350(02)01496-7
  • Chen EM, Cox JT, Begaj T, Armstrong GW, Khurana RN, Parikh R. Private equity in ophthalmology and optometry: analysis of acquisitions from 2012 through 2019 in the United States. Ophthal. 2020;127(4):445–455. doi:10.1016/j.ophtha.2020.01.007
  • Yetter EJ List of private equity firms investing in ophthalmology practices and surgery centers; 2020. Available from: https://www.physiciansfirst.com/post/list-of-private-equity-firms-investing-in-ophthalmology-practices-and-surgery-centers. Excerpt from published White Paper Physicians First. Accessed January 29, 2021.
  • Stodola E Patterns in LASIK cases since reopening practices. Available from: https://www.eyeworld.org/patterns-LASIK-cases-reopening-practices. 2020. Accessed December 15, 2020.
  • Fadlallah A, Khattar G, Habre C, Khanafer D. LASIK procedures during COVID-19. J Cat Refract Surg. 2020;46(12):1682. doi:10.1097/j.jcrs.0000000000000338
  • CBS New York. COVID Pandemic Prompts Uptick in LASIK Surgery Procedures. Available from: https://newyork.cbslocal.com/2020/10/27/covid-pandemic-prompts-uptick-in-LASIK-surgery-procedures/. Accessed December 15, 2021.