121
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Abnormal N-Glycosylation of Human Lens Epithelial Cells in Type-2 Diabetes May Contribute to Cataract Progression

, , , , , , ORCID Icon, ORCID Icon & show all
Pages 1365-1373 | Published online: 31 Mar 2021

References

  • Starr C, Gupta P, Farid M, et al. An algorithm for the preoperative diagnosis and treatment of ocular surface disorders. J Cataract Refract Surg. 2019;45(5):669–684. doi:10.1016/j.jcrs.2019.03.023
  • Sheeladevi S, Lawrenson J, Fielder A, Suttle C. Global prevalence of childhood cataract: a systematic review. Eye. 2016;30:1160–1169.
  • Thompson J, Lakhani N. Cataracts. Prim Care Clin Office Pract. 2015;42:409–423. doi:10.1016/j.pop.2015.05.012
  • Kim SI, Kim SJ. Prevalence and risk factors for cataracts in persons with type 2 diabetes mellitus. Korean J Ophthalmol. 2006;20(4):201–204. doi:10.3341/kjo.2006.20.4.201
  • Pollreisz A, Schmidt-Erfurth U. Diabetic cataract—pathogenesis, epidemiology and treatment. J Ophthalmol. 2010;2010.
  • Bessa A, Ragab A, Nassra R, Piñero D, Shaheen S. Expression levels of aldose reductase enzyme, vascular endothelial growth factor, and intercellular adhesion molecule-1 in the anterior lens capsule of diabetic cataract patients. J Cataract Refract Surg. 2018;44(12):1431–1435. doi:10.1016/j.jcrs.2018.07.054
  • Fisher RF. Changes in the permeability of the lens capsule in senile cataract. Trans Ophthalmol Soc UK. 1977;97:100–103.
  • Krag S, Andreassen T. Mechanical properties of the human lens capsule. Prog Ret Eye Res. 2003;22:749–767.
  • Kiziltoprak H, Tekin K, Inanc M, Sakir Y. Cataract in diabetes mellitus. World J Diabetes. 2019;10(3):140–153. doi:10.4239/wjd.v10.i3.140
  • Dewald J, Colomb F, Bobowski-Gerard M, Groux-Degroote S, Delannoy P. Role of cytokine-induced glycosylation changes in regulating cell interactions and cell signaling in inflammatory diseases and cancer. Cells. 2016;5:43. doi:10.3390/cells5040043
  • Stephens DN, McNamara N. Altered mucin and glycoprotein expression in dry eye disease. Optom Vis Sci. 2015;92:931–938. doi:10.1097/OPX.0000000000000664
  • Takai Y, Tanito M, Ohira A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci. 2012;53(1):241–247. doi:10.1167/iovs.11-8434
  • Ten Berge J, Fazil Z, van den Born I, et al. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2019;97(2):185–192. doi:10.1111/aos.13899
  • Zheng Y, Rao YQ, Li JK, Huang Y, Zhao P, Li J. Age-related pro-inflammatory and pro-angiogenic changes in human aqueous humor. Int J Ophthalmol. 2018;181:96–200.
  • Chen W, Lin H, Zhong X, et al. Discrepant expression of cytokines in inflammation- and age-related cataract patients. PLoS One. 2014;9:e109647.
  • Papadimitriou D, Bothou C, Skarmoutsos F, Alexandrides T, Papaevangelou V, Papadimitriou A. The autoimmune hypothesis for acute bilateral cataract in type 1 diabetes. Diabetes Metab. 2016;42:18. doi:10.1016/j.diabet.2016.04.006
  • Selin JZ, Lindblad BE, Rautiainen S, et al. Are increased levels of systemic oxidative stress and inflammation associated with age-related cataract? Antioxid Redox Signal. 2014;21(5):700–704. doi:10.1089/ars.2014.5853
  • Chylack LT, Wolfe JK, Singer DM, et al. The lens opacities classification system III. Arch Ophthalmol. 1993;111:831–836. doi:10.1001/archopht.1993.01090060119035
  • Humason GL. Specific staining methods. In: Kennedy D, Park RB, editors. Animal Tissue Techniques. San Francisco CA: W.H. Freeman and Co; 1972:183–185.
  • Schägger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1(1):16–22. doi:10.1038/nprot.2006.4
  • Solórzano C, Mayoral M, de Los Angeles Carlos M, et al. Over expression of glycosylated proteins in cervical cancer recognized by the Machaerocereuseruca agglutinin. Folia Histochemica Et Cytobiologica. 2012;50:398–406. doi:10.5603/FHC.2012.0054
  • Drinkwater JJ, Davis WA, Davis TME. A systematic review of risk factors for cataract in type 2 diabetes. Diabetes Metab Res Rev. 2019;35:35. doi:10.1002/dmrr.3073
  • Srinivasan S, Raman R, Swaminathan G, Ganesan S, Kulothungan V, Sharma ST. Incidence, progression, and risk factors for cataract in type 2 diabetes. Invest Ophthalmol Vis Sci. 2017;58(13):5921–5929. doi:10.1167/iovs.17-22264
  • De Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005;179:43–55. doi:10.1159/000084508
  • Duncan MK, Kozmik Z, Cveklova K, Piatigorsky J, Cvekl A. Over-expression of PAX6 (5a) in lens fiber cells results in cataract and upregulation of (alpha) 5 (beta)1 integrin expression. J Cell Sci. 2000;113:3173–3185.
  • Inanc M, Tekin K, Erol YO, et al. The ultrastructural alterations in the lens capsule and epithelium in eyes with traumatic white cataract. Int Ophthalmol. 2019;39(1):47–53. doi:10.1007/s10792-017-0783-0
  • Wilson J, Trivedi M, Biber R, Golub R. Anterior capsule rupture and subsequent cataract formation in Alport syndrome. J AAPOS. 2006;10:182–183. doi:10.1016/j.jaapos.2005.09.008
  • Yan Y, Yu H, Sun L, et al. Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract. Aging. 2019;11(9):2699–2723. doi:10.18632/aging.101943
  • Ammash NM, Sundt TM, Connolly HM. Marfan syndrome-diagnosis and management. Curr Probl Cardiol. 2008;33:7–39. doi:10.1016/j.cpcardiol.2007.10.001
  • Zenker M, Aigner T, Wendler O, et al. Human laminin β2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13(21):2625–2632. doi:10.1093/hmg/ddh284
  • Van Agtmael T, Schlotzer-Schrehardt U, McKie L, et al. Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. Hum Mol Genet. 2008;14:3161–3168. doi:10.1093/hmg/ddi348
  • Yan Q, Clark J, Wight T, Sage H. Alterations in the lens capsule contribute to cataractogenesis in SPARC-null mice. J Cell Sci. 2002;115:2747–2756.
  • Yan Q, Perdue N, Blake D, Sage E. Absence of SPARC in murine lens epithelium leads to increased deposition of laminin-1 in lens capsule. Invest Ophthalmol Vis Sci. 2005;46:4652–4660. doi:10.1167/iovs.05-0460
  • Henics T, Wheatley DN. Cytoplasmic vacuolation, adaptation and cell death: a view on new perspectives and features. Biol Cell. 1999;91(7):485–498. doi:10.1016/S0248-4900(00)88205-2
  • Kase S, Kitaichi N, Furudate N, Yoshida K, Ohno S. Increased expression of mucinous glycoprotein KL-6 in human pterygium. Br J Ophthalmol. 2006;90:1208–1209. doi:10.1136/bjo.2006.094300
  • Kawano K, Uehara F, Ohba N. Lectin-cytochemical study on epithelial mucus glycoprotein of conjunctiva and pterygium. Exp Eye Res. 1988;47:43–51. doi:10.1016/0014-4835(88)90022-X
  • Debray H, Decout D, Strecker G, Spik G, Montreuil J. Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem. 1981;117(1):41–55. doi:10.1111/j.1432-1033.1981.tb06300.x
  • Sharma V, Srinivas VR, Adhikari P, Vijayan M, Surolia A. Molecular basis of recognition by Gal/GalNAc specific legume lectins: influence of Glu 129 on the specificity of peanut agglutinin (PNA) towards C2-substituents of galactose. Glycobiology. 1998;8:1007–1012. doi:10.1093/glycob/8.10.1007
  • Rudman N, Gornik O, Lauc G. Altered N‐glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett. 2019;593:1598–1615. doi:10.1002/1873-3468.13495
  • Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan R. Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest. 2009;119:1837–1848. doi:10.1172/JCI38277
  • Tagliavini J, Gandolfil S, Marainil G. Cytoskeleton abnormalities in human senile cataract. Curr Res Eye. 1986;5:903–910. doi:10.3109/02713688608995170
  • Petrosyan A, Ali MF, Cheng P. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem. 2015;290:6256–6269. doi:10.1074/jbc.M114.618702
  • Harding C, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology. 2019;29:519–529.