130
Views
2
CrossRef citations to date
0
Altmetric
Original Research

The Effect of Sodium Iodide on Stromal Loading, Distribution and Degradation of Riboflavin in a Rabbit Model of Transepithelial Corneal Crosslinking

, , ORCID Icon & ORCID Icon
Pages 1985-1994 | Published online: 11 May 2021

References

  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–627. doi:10.1016/S0002-9394(02)02220-1
  • Zhang Y, Conrad AH, Conrad GW, et al. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem. 2011;286(15):13011–13022. doi:10.1074/jbc.M110.169813
  • Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103. doi:10.1006/exer.1997.0410
  • Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg. 2011;37(1):149–160. doi:10.1016/j.jcrs.2010.07.030
  • O’Brart DPS, Kwong TQ, Patel P, et al. Long-term follow-up of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linking to halt the progression of keratoconus. Br J Ophthalmol. 2013;97(4):433–437. doi:10.1136/bjophthalmol-2012-302556
  • Raiskup F, Theuring A, Pillunat LE, et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41(1):41–46. doi:10.1016/j.jcrs.2014.09.033
  • Wittig-Silva C, Chan E, Islam FMA, et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus. Ophthalmology. 2014;121(4):812–821. doi:10.1016/j.ophtha.2013.10.028
  • Dhawan S, Rao K, Natrajan S. Complications of corneal collagen cross-linking. J Ophthalmol. 2011;2011:1–5. doi:10.1155/2011/869015
  • Goldich Y, Marcovich AL, Barkana Y, et al. Safety of corneal collagen cross-linking with UV-A and riboflavin in progressive keratoconus. Cornea. 2010;29(4):409–411. doi:10.1097/ICO.0b013e3181bd9f8c
  • Greenstein SA, Fry KL, Bhatt J, et al. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: scheimpflug and biomicroscopic analysis. J Cataract Refract Surg. 2010;36(12):2105–2114. doi:10.1016/j.jcrs.2010.06.067
  • Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg. 2009;25(9):S824–S828. doi:10.3928/1081597X-20090813-12
  • Xu K, Chan TCY, Vajpayee RB, et al. Corneal collagen cross-linking. Asia Pac J Ophthalmol (Phila). 2015;4(5):300–306. doi:10.1097/APO.0000000000000145
  • Hammer A, Rudaz S, Guinchard S, et al. Analysis of riboflavin compounds in the rabbit cornea in vivo. Curr Eye Res. 2016;41(9):1166–1172. doi:10.3109/02713683.2015.1101141
  • Baiocchi S, Mazzotta C, Cerretani D, et al. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35(5):893–899. doi:10.1016/j.jcrs.2009.01.009
  • Gore DM, O’Brart D, French P, et al. Transepithelial riboflavin absorption in an ex vivo rabbit corneal model. Invest Ophthalmol Vis Sci. 2015;56(8):5006–5011. doi:10.1167/iovs.15-16903
  • Samaras K, O’Brart DP, Doutch J, et al. Effect of epithelial retention and removal on riboflavin absorption in porcine corneas. J Refract Surg. 2009;25(9):771–775. doi:10.3928/1081597X-20090813-03
  • Kissner A, Spoerl E, Jung R, et al. Pharmacological modification of the epithelial permeability by benzalkonium chloride in UVA/riboflavin corneal collagen cross-linking. Curr Eye Res. 2010;35(8):715–721.doi:10.3109/02713683.2010.481068
  • Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg. 2010;26(12):942–948. doi:10.3928/1081597X-20100212-09
  • Caporossi A, Mazzotta C, Paradiso AL, et al. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39(8):1157–1163. doi:10.1016/j.jcrs.2013.03.026
  • Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35(3):540–546. doi:10.1016/j.jcrs.2008.11.036
  • Armstrong BK, Lin MP, Ford MR, et al. Biological and biomechanical responses to traditional epithelium-off and transepithelial riboflavin-UVA CXL techniques in rabbits. J Refract Surg. 2013;29(5):332–341. doi:10.3928/1081597X-20130415-04
  • Morrison PWJ, Connon CJ, Khutoryanskiy VV. Cyclodextrin-mediated enhancement of riboflavin solubility and corneal permeability. Mol Pharm. 2013;10(2):756–762. doi:10.1021/mp3005963
  • Ostacolo C, Caruso C, Tronino D, et al. Enhancement of corneal permeation of riboflavin-5′-phosphate through vitamin E TPGS: a promising approach in corneal trans-epithelial cross linking treatment. Int J Pharm. 2013;440(2):148–153. doi:10.1016/j.ijpharm.2012.09.051
  • Caruso C, Ostacolo C, Epstein RL, et al. Transepithelial corneal cross-linking with vitamin E-enhanced riboflavin solution and abbreviated, low-dose UV-A. Cornea. 2016;35(2):145–150. doi:10.1097/ICO.0000000000000699
  • Rechichi M, Daya S, Scorcia V, et al. Epithelial-disruption collagen crosslinking for keratoconus: one-year results. J Cataract Refract Surg. 2013;39(8):1171–1178. doi:10.1016/j.jcrs.2013.05.022
  • Kaya V, Utine CA, Yilmaz OF. Efficacy of corneal collagen cross-linking using acustom epithelial debridement technique in thin corneas: a confocal microscopy study. J Refract Surg. 2010;27(6):444–450. doi:10.3928/1081597X-20101201-01
  • Hashemi H, Miraftab M, Hafezi F, et al. Matched comparison study of total and partial epithelium removal in corneal cross-linking. J Refract Surg. 2015;31(2):110–115. doi:10.3928/1081597X-20150122-06
  • Gore DM, O’Brart DP, French P, et al. A comparison of different corneal iontophoresis protocols for promoting transepithelial riboflavin penetration. Invest Ophthalmol Vis Sci. 2015;56(13):7908–7914. doi:10.1167/iovs.15-17569
  • Lamy R, Chan E, Zhang H, et al. Ultrasound-enhanced penetration of topical riboflavin into the corneal stroma. Invest Ophthalmol Vis Sci. 2013;54(8):5908–5912. doi:10.1167/iovs.13-12133
  • Franch A, Birattari F, Dal Mas G, et al. Evaluation of intrastromal riboflavin concentration in human corneas after three corneal cross-linking imbibition procedures: a pilot study. J Ophthalmol. 2015;2015:794256. doi:10.1155/2015/794256
  • Buzzonetti L, Petrocelli G, Valente P, et al. Iontophoretic transepithelial corneal cross-linking to halt keratoconus in pediatric cases: 15-month follow-up. Cornea. 2015;34(5):512–515. doi:10.1097/ICO.0000000000000410
  • Li N, Fan Z, Peng X, et al. Clinical observation of transepithelial corneal collagen cross-linking by iontophoresis of riboflavin in treatment of keratoconus. Eye Sci. 2014;29(3):160–164. PMID: 2611972
  • Vinciguerra P, Randleman JB, Romano V, et al. Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J Refract Surg. 2014;30(11):746–753. doi:10.3928/1081597X-20141021-06
  • Soeters N, Wisse RPL, Godefrooij DA, et al. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol. 2015;159(5):821–828.e3. doi:10.1016/j.ajo.2015.02.005
  • Jia H, Peng X. Efficacy of iontophoresis-assisted epithelium-on corneal cross-linking for keratoconus. Int J Ophthalmol. 2018;11(4):687–694. doi:10.18240/ijo.2018.04.25
  • Al Fayez MF, Alfayez S, Alfayez Y. Transepithelial versus epithelium-off corneal collagen cross-linking for progressive keratoconus: a prospective randomized controlled trial. Cornea. 2015;34(Suppl 10):S53–56. doi:10.1097/ICO.0000000000000547
  • Hirji N, Sykakis E, Lam FC, et al. Corneal collagen crosslinking for keratoconus or corneal ectasia without epithelial debridement. Eye. 2015;29(6):764–768. doi:10.1038/eye.2015.23
  • Gatzioufas Z, Raiskup F, O’Brart D, et al. Transepithelial corneal cross-linking using an enhanced riboflavin solution. J Refract Surg. 2016;32(6):372–377. doi:10.3928/1081597X-20160428-02
  • Yuksel E, Novruzlu S, Ozmen MC, et al. A study comparing standard and transepithelial collagen cross-linking riboflavin solutions: epithelial findings and pain scores. J Ocul Pharmacol Ther. 2015;31(5):296–302. doi:10.1089/jop.2014.0090
  • Taneri S, Oehler S, Lytle G, et al. Evaluation of epithelial integrity with various transepithelial corneal cross-linking protocols for treatment of keratoconus. J Ophthalmol. 2014;2014:1–5. doi:10.1155/2014/614380
  • Wollensak G, Hammer CM, Spörl E, et al. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket. Cornea. 2014;33(3):300–305. doi:10.1097/ICO.0000000000000059
  • Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg. 2009;25(11):1034–1037. doi:10.3928/1081597X-20090901-02
  • Labate C, Lombardo M, Lombardo G, et al. Biomechanical strengthening of the human cornea induced by nanoplatform-based transepithelial riboflavin/UV-A corneal cross-linking. Invest Opthalmol Vis Sci. 2017;58(1):179. doi:10.1167/iovs.16-20813
  • Bottos KM, Oliveira AG, Bersanetti PA, et al. Corneal absorption of a new riboflavin-nanostructured system for transepithelial collagen cross-linking. PLoS One. 2013;8(6):e66408. doi:10.1371/journal.pone.0066408
  • Lombardo G, Micali NL, Villari V, et al. Assessment of stromal riboflavin concentration–depth profile in nanotechnology-based transepithelial corneal crosslinking. J Cataract Refract Surg. 2017;43(5):680–686. doi:10.1016/j.jcrs.2017.03.026
  • University of Missouri-Columbia. Dietary riboflavin (Vitamin B-2) and cornea cross-linking. Available from: https://clinicaltrials.gov/ct2/show/NCT03095235. NLM identifier: NCT03095235. Accessed August 24, 2020..
  • Zhang X, Zhao J, Li M, et al. Conventional and transepithelial corneal cross-linking for patients with keratoconus. PLoS One. 2018;13(4):e0195105. doi:10.1371/journal.pone.0195105
  • Niyazmand H, McKelvie J, Li Y, McLintock C. Comparison of visual and tomographic outcomes of epithelium-on and epithelium-off accelerated corneal crosslinking: a longitudinal Study. Cornea. 2020. doi:10.1097/ICO.0000000000002567
  • Ng ALK, Kwok PSK, Wu RTK, et al. Comparison of the demarcation line on ASOCT after simultaneous lasik and different protocols of accelerated collagen crosslinking. Cornea. 2017;36(1):74–77. doi:10.1097/ICO.0000000000001012
  • Richoz O, Hammer A, Tabibian D, et al. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6. doi:10.1167/tvst.2.7.6
  • Rubinfeld RS, Caruso C, Ostacolo C. Corneal cross-linking: the science beyond the myths and misconceptions. Cornea. 2019;38(6):780–790. doi:10.1097/ICO.0000000000001912
  • Caruso C, Barbaro G, Epstein RL, et al. Corneal cross-linking. Cornea. 2016;35(5):659–662. doi:10.1097/ICO.0000000000000809
  • Caruso C, Epstein RL, Ostacolo C, et al. Customized corneal cross-linking—A mathematical model. Cornea. 2017;36(5):600–604. doi:10.1097/ICO.0000000000001160
  • Kamaev P, Friedman MD, Sherr E, et al. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Opthalmol Vis Sci. 2012;53(4):2360. doi:10.1167/iovs.11-9385
  • Rubinfeld RS, Stulting RD, Gum GG, et al. Quantitative analysis of corneal stromal riboflavin concentration without epithelial removal. J Cataract Refract Surg. 2018;44(2):237–242. doi:10.1016/j.jcrs.2018.01.010
  • Stulting RD, Trattler WB, Woolfson JM, et al. Corneal crossinking without epithelial removal. J Cataract Refract Surg. 2018;44(11):1363–1370. doi:10.1016/j.jcrs.2018.07.029
  • Holmström B, Oster G. Riboflavin as an electron donor in photochemical reactions. J Am Chem Soc. 1961;83(8):1867–1871. doi:10.1021/ja01469a022
  • Sheraz MA, Kazi SH, Ahmed S, Anwar Z, Ahmad I. Photo, thermal and chemical degradation of riboflavin. Beilstein J Org Chem. 2014;10:1999–2012. doi:10.3762/bjoc.10.208