197
Views
4
CrossRef citations to date
0
Altmetric
Review

Corneal Biomechanical Assessment with Ultra-High-Speed Scheimpflug Imaging During Non-Contact Tonometry: A Prospective Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1409-1423 | Published online: 06 Apr 2021

References

  • Humphrey J. Continuum biomechanics of soft biological tissues. Proc R Soc London Series A. 2003;459:3–46
  • Humphrey J. Continuum thermomechanics and the clinical treatment of disease and injury. Appl Mech Rev. 2003;56(2):231–260. doi:10.1115/1.1536177
  • Provenzano PP, Lakes RS, Corr DT, Vanderby R Jr. Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol. 2002;1(1):45–57. doi:10.1007/s10237-002-0004-1
  • De Stefano VS, Dupps WJ Jr. Biomechanical diagnostics of the cornea. Int Ophthalmol Clin. 2017;57(3):75–86. doi:10.1097/IIO.0000000000000172
  • Hamilton KE, Pye DC. Young’s modulus in normal corneas and the effect on applanation tonometry. Optom Vis Sci. 2008;85(6):445–450. doi:10.1097/OPX.0b013e3181783a70
  • Liu J, Qi H. Dissipated energy function, hysteresis and precondition of a viscoelastic solid model. Nonlinear Anal Real World Appl. 2010;11(2):907–912. doi:10.1016/j.nonrwa.2009.01.033
  • Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res. 2006;83(4):709–720. doi:10.1016/j.exer.2006.03.015
  • Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea. J Biomech. 1986;19(10):847–853. doi:10.1016/0021-9290(86)90135-1
  • Seiler T, Matallana M, Sendler S, Bende T. Does Bowman’s layer determine the biomechanical properties of the cornea? Refract Corneal Surg. 1992;8(2):139–142.
  • Hoeltzel DA, Altman P, Buzard K, Choe K. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 1992;114(2):202–215. doi:10.1115/1.2891373
  • Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371–1375. doi:10.1016/j.jcrs.2007.04.021
  • González-Méijome JM, Villa-Collar C, Queirós A, Jorge J, Parafita MA. Pilot study on the influence of corneal biomechanical properties over the short term in response to corneal refractive therapy for myopia. Cornea. 2008;27(4):421–426. doi:10.1097/ICO.0b013e318164e49d
  • Kirwan C, O’Keefe M. Corneal hysteresis using the Reichert ocular response analyser: findings pre- and post-LASIK and LASEK. Acta Ophthalmol. 2008;86(2):215–218. doi:10.1111/j.1600-0420.2007.01023.x
  • Salomão MQ, Hofling-Lima AL, Gomes Esporcatte LP, et al. The role of corneal biomechanics for the evaluation of ectasia patients. Int J Environ Res Public Health. 2020;17(6). doi:10.3390/ijerph17062113.
  • Esporcatte LPG, Salomao MQ, Lopes BT, et al. Biomechanical diagnostics of the cornea. Eye Vis (Lond). 2020;7(1):9. doi:10.1186/s40662-020-0174-x
  • Grise-Dulac A, Saad A, Abitbol O, et al. Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J Glaucoma. 2012;21(7):486–489. doi:10.1097/IJG.0b013e318220daf0
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–162. doi:10.1016/j.jcrs.2004.10.044
  • Fontes BM, Ambrosio R Jr, Alonso RS, Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics in eyes with refraction of −19.00 to +9.00 D in healthy Brazilian patients. J Refract Surg. 2008;24(9):941–945. doi:10.3928/1081597X-20081101-14
  • Ambrósio R Jr, Nogueira LP, Caldas DL, et al. Evaluation of corneal shape and biomechanics before LASIK. Int Ophthalmol Clin. 2011;51(2):11–38. doi:10.1097/IIO.0b013e31820f1d2d
  • Fontes BM, Ambrosio R Jr, Velarde GC, Nose W. Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes. J Refract Surg. 2011;27(3):209–215. doi:10.3928/1081597X-20100415-02
  • Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49(9):3919–3926. doi:10.1167/iovs.07-1321
  • Piñero DP, Alcón N. In vivo characterization of corneal biomechanics. J Cataract Refract Surg. 2014;40(6):870–887. doi:10.1016/j.jcrs.2014.03.021
  • Ambrósio JR, Ramos I, Luz A, et al. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013;72(2):99–102. doi:10.1590/S0034-72802013000200005
  • Koprowski R, Ambrósio R Jr, Reisdorf S. Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement. J Biophoton. 2015;8(11–12):968–978. doi:10.1002/jbio.201400137
  • Hashemi H, Asgari S, Mortazavi M, Ghaffari R. Evaluation of corneal biomechanics after excimer laser corneal refractive surgery in high myopic patients using dynamic Scheimpflug technology. Eye Contact Lens. 2017;43(6):371–377. doi:10.1097/ICL.0000000000000280
  • Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal deformation parameters provided by the Corvis-ST Pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24(8):568–574. doi:10.1097/IJG.0000000000000133
  • Lanza M, Iaccarino S, Bifani M. In vivo human corneal deformation analysis with a Scheimpflug camera, a critical review. J Biophoton. 2016;9(5):464–477. doi:10.1002/jbio.201500233
  • Tanter M, Touboul D, Gennisson JL, Bercoff J, Fink M. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging. 2009;28(12):1881–1893. doi:10.1109/TMI.2009.2021471
  • Dupps WJ Jr, Netto MV, Herekar S, Krueger RR. Surface wave elastometry of the cornea in porcine and human donor eyes. J Refract Surg. 2007;23(1):66–75. doi:10.3928/1081-597X-20070101-11
  • Ford MR, Dupps WJ Jr, Rollins AM, Roy AS, Hu Z. Method for optical coherence elastography of the cornea. J Biomed Opt. 2011;16(1):016005. doi:10.1117/1.3526701
  • Seiler TG, Shao P, Eltony A, Seiler T, Yun SH. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019;202:118–125. doi:10.1016/j.ajo.2019.02.010
  • Lee H, Kang DSY, Ha BJ, et al. Biomechanical properties of the cornea using a dynamic Scheimpflug analyzer in healthy eyes. Yonsei Med J. 2018;59(9):1115–1122. doi:10.3349/ymj.2018.59.9.1115
  • Valbon BF, Ambrósio R Jr, Fontes BM, Luz A, Roberts CJ, Alves MR. Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients. J Refract Surg. 2014;30(7):468–473. doi:10.3928/1081597X-20140521-01
  • Salouti R, Bagheri M, Shamsi A, Zamani M. Corneal parameters in healthy subjects assessed by Corvis ST. J Ophthalmic Vis Res. 2020;15(1):24–31.
  • Huang Y, Lin S, Ma D, et al. Corneal biomechanical properties and associated factors in school-age children. Eye Sci. 2013;28(1):34–39.
  • Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek K. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7(51):1475–1485. doi:10.1098/rsif.2010.0108
  • Valbon BF, Ambrósio R, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. J Arq Bras Oftalmol. 2013;76(4):229–232. doi:10.1590/S0004-27492013000400008
  • Orr JB, Zvirgzdina M, Wolffsohn J. The influence of age, ethnicity, eye/body size and diet on corneal biomechanics. Invest Ophthalmol Vis Sci. 2017;58(8):1131.
  • Asaoka R, Nakakura S, Tabuchi H, et al. The relationship between Corvis ST tonometry measured corneal parameters and intraocular pressure, corneal thickness and corneal curvature. PLoS One. 2015;10(10):e0140385. doi:10.1371/journal.pone.0140385
  • Tubtimthong A, Chansangpetch S, Ratprasatporn N, et al. Comparison of corneal biomechanical properties among axial myopic, nonaxial myopic, and nonmyopic eyes. Biomed Res Int. 2020;2020:8618615. doi:10.1155/2020/8618615
  • Wang J, Li Y, Jin Y, Yang X, Zhao C, Long Q. Corneal biomechanical properties in myopic eyes measured by a dynamic Scheimpflug analyzer. J Ophthalmol. 2015;2015:1–8. doi:10.1155/2015/985071
  • Sarici AM, Yuksel Elgin C, Dikkaya F. Effect of fasting on corneal biomechanical and structural parameters. Curr Eye Res. 2016;41(7):908–912. doi:10.3109/02713683.2015.1080279
  • Long Q, Wang J, Yang X, Jin Y, Ai F, Li Y. Assessment of Corneal Biomechanical Properties by CorVis ST in Patients with Dry Eye and in Healthy Subjects. J Ophthalmol. 2015;2015:380624. doi:10.1155/2015/380624
  • Singh M, Han Z, Li J, et al. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography. J Cataract Refract Surg. 2018;44(8):1023–1031. doi:10.1016/j.jcrs.2018.03.036
  • Salouti R, Khalili MR, Zamani M, Ghoreyshi M, Nowroozzadeh MH. Assessment of the changes in corneal biomechanical properties after collagen cross-linking in patients with keratoconus. J Curr Ophthalmol. 2019;31(3):262–267. doi:10.1016/j.joco.2019.02.002
  • Sahin A, Bayer A, Ozge G, Mumcuoğlu T. Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements. Invest Ophthalmol Vis Sci. 2009;50(10):4597–4604. doi:10.1167/iovs.08-2763
  • Goldich Y, Barkana Y, Gerber Y, et al. Effect of diabetes mellitus on biomechanical parameters of the cornea. J Cataract Refract Surg. 2009;35(4):715–719. doi:10.1016/j.jcrs.2008.12.013
  • Ramm L, Herber R, Spoerl E, Pillunat LE, Terai N. Measurement of corneal biomechanical properties in diabetes mellitus using the ocular response analyzer and the Corvis ST. Cornea. 2019;38(5):595–599. doi:10.1097/ICO.0000000000001879
  • Xu J, Shi G-P. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta Mol Basis Dis. 2014;1842(11):2106–2119. doi:10.1016/j.bbadis.2014.07.008
  • Ponticos M, Partridge T, Black CM, Abraham DJ, Bou-Gharios G. Regulation of collagen Type I in vascular smooth muscle cells by competition between Nkx2.5 and δEF1/ZEB1. Mol Cell Biol. 2004;24(14):6151–6161. doi:10.1128/MCB.24.14.6151-6161.2004
  • Ciulla T, Bracha P, Pollack J, Williams D. Real-world outcomes of anti–vascular endothelial growth factor therapy in diabetic macular edema in the United States. Ophthalmol Retina. 2018;2.
  • Lim L, Cheung N, Gazzard G, Chan Y, Wong TY, Saw S-M. Corneal biomechanical properties and retinal vascular caliber in children. Invest Ophthalmol Vis Sci. 2008;50:121–125. doi:10.1167/iovs.08-2352
  • Yazıcı AT, Kara N, Yüksel K, et al. The biomechanical properties of the cornea in patients with systemic lupus erythematosus. Eye. 2011;25(8):1005–1009. doi:10.1038/eye.2011.99
  • Can ME, Erten S, Can GD, Cakmak HB, Sarac O, Cagil N. Corneal biomechanical properties in rheumatoid arthritis. Eye Contact Lens. 2015;41(6):382–385. doi:10.1097/ICL.0000000000000142
  • Mahendradas P, Francis M, Vala R, et al. Quantification of ocular biomechanics in ocular manifestations of systemic autoimmune diseases. Ocul Immunol Inflamm. 2019;27(7):1127–1137. doi:10.1080/09273948.2018.1501491
  • Kara N, Bozkurt E, Baz O, et al. Corneal biomechanical properties and intraocular pressure measurement in Marfan patients. J Cataract Refract Surg. 2012;38(2):309–314. doi:10.1016/j.jcrs.2011.08.036
  • Long Q, Wang J, Yang X, Jin Y, Ai F, Li Y. Assessment of corneal biomechanical properties by CorVis ST in patients with dry eye and in healthy subjects. J Ophthalmol. 2015;2015:1–7.
  • Long Q, Wang J-Y, Xu D, Li Y. Comparison of corneal biomechanics in Sjögren’s syndrome and non-Sjögren’s syndrome dry eyes by Scheimpflug based device. Int J Ophthalmol. 2017;10:711–716. doi:10.18240/ijo.2017.05.08
  • Shetty R, Kaweri L, Pahuja N, et al. Current review and a simplified “five-point management algorithm” for keratoconus. Indian J Ophthalmol. 2015;63:46–53. doi:10.4103/0301-4738.151468
  • Zhang XH, Li X. Effect of rigid gas permeable contact lens on keratoconus progression: a review. Int J Ophthalmol. 2020;13(7):1124–1131. doi:10.18240/ijo.2020.07.17
  • Radaie-Moghadam S, Hashemi H, Jafarzadehpur E, Yekta A, Khabazkhoob M, Research V. Corneal biomechanical changes following toric soft contact lens wear. J Ophthal Vis Res. 2016;11(2):131–135. doi:10.4103/2008-322X.183921
  • Kissner A, Boehm AG, Pillunat LE, Spoerl E. Effect of soft contact lens wear on corneal biomechanical properties. Invest Ophthalmol Vis Sci. 2009;50(13):1753.
  • Shokrollahzadeh F, Hashemi H, Jafarzadehpour E, Mirzajani A, Khabazkhoob M, Asgari S. Corneal biomechanics after rigid gas permeable contact lens wear in keratoconus eyes. J Eye Sci. 2016;1:25. doi:10.21037/jes.2016.07.01
  • Ambrósio R Jr, Lopes B, Amaral J, et al. Keratoconus: break of paradigms and contradictions of a new subspecialty. J Rev Bras Oftalmol. 2019;78:81–85.
  • Sedaghat M, Ostadi-Moghadam H, Jabbarvand M, Askarizadeh F, Momeni Moghaddam H, Narooie Noori F. Corneal hysteresis and corneal resistance factor in pellucid marginal degeneration. J Curr Ophthalmol. 2017;30. doi:10.1016/j.joco.2017.08.002
  • Ambrósio R Jr., Correia FF, Lopes B, et al. Corneal biomechanics in ectatic diseases: refractive surgery implications. Open Ophthalmol J. 2017;11(1):176–193. doi:10.2174/1874364101711010176
  • Salomão M, Hoffling-Lima A, Lopes B, et al. Recent developments in keratoconus diagnosis. Expert Rev Ophthalmol. 2018;13(6):329–341. doi:10.1080/17469899.2018.1555036
  • Bao F, Geraghty B, Wang Q, Elsheikh A. Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye Vis. 2016;3(1). doi:10.1186/s40662-016-0048-4
  • Steinberg J, Katz T, Lücke K, Frings A, Druchkiv V, Linke SJ. Screening for keratoconus with new dynamic biomechanical in vivo Scheimpflug analyses. Cornea. 2015;34(11):1404–1412. doi:10.1097/ICO.0000000000000598
  • Ambrosio R Jr, Lopes BT, Faria-Correia F, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–443. doi:10.3928/1081597X-20170426-02
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–627. doi:10.1016/S0002-9394(02)02220-1
  • Spoerl E, Terai N, Scholz F, Raiskup F, Pillunat LE. Detection of biomechanical changes after corneal cross-linking using ocular response analyzer software. J Refract Surg. 2011;27(6):452–457. doi:10.3928/1081597X-20110106-01
  • Gkika M, Labiris G, Giarmoukakis A, Koutsogianni A, Kozobolis V. Evaluation of corneal hysteresis and corneal resistance factor after corneal cross-linking for keratoconus. Graefes Arch Clin Exp Ophthalmol. 2012;250(4):565–573. doi:10.1007/s00417-011-1897-0
  • De Bernardo M, Capasso L, Lanza M, et al. Long-term results of corneal collagen crosslinking for progressive keratoconus. J Optom. 2015;8(3):180–186. doi:10.1016/j.optom.2014.05.006
  • Salman A. Corneal biomechanical and anterior chamber parameters variations after 1-year of transepithelial corneal collagen cross linking in eyes of children with keratoconus. Middle East Afr J Ophthalmol. 2015;23.
  • Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg. 2014;30(6):408–414. doi:10.3928/1081597X-20140513-02
  • Hashemi H, Asgari S, Mehravaran S, Miraftab M, Ghaffari R, Fotouhi A. Corneal biomechanics after accelerated cross-linking: comparison between 18 and 9 mW/cm2 protocols. J Refract Surg. 2017;33(8):558–562. doi:10.3928/1081597X-20170621-04
  • Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40(6):1013–1020. doi:10.1016/j.jcrs.2013.12.012
  • Kling S, Marcos S. Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests. J Refract Surg. 2013;29(7):490–497. doi:10.3928/1081597X-20130617-08
  • Vega-Estrada A, Alio JL. The use of intracorneal ring segments in keratoconus. Eye Vis. 2016;3(1):8. doi:10.1186/s40662-016-0040-z
  • Torquetti L, Berbel RF, Ferrara P. Long-term follow-up of intrastromal corneal ring segments in keratoconus. J Cataract Refract Surg. 2009;35(10):1768–1773. doi:10.1016/j.jcrs.2009.05.036
  • Vega-Estrada A, Alió JL, Brenner LF, Burguera N. Outcomes of intrastromal corneal ring segments for treatment of keratoconus: five-year follow-up analysis. J Cataract Refract Surg. 2013;39(8):1234–1240. doi:10.1016/j.jcrs.2013.03.019
  • Daas L. Changes in biomechanical properties of keratoconic corneas following intracorneal ring segment (ICRS) implantation. Acta Ophthalmol. 2019;97(S263).
  • Park SE, Tseng M, Lee JK. Effectiveness of intracorneal ring segments for keratoconus. Curr Opin Ophthalmol. 2019;30(4):220–228. doi:10.1097/ICU.0000000000000582
  • d’Azy CB, Pereira B, Chiambaretta F, Dutheil F. Efficacy of different procedures of intra-corneal ring segment implantation in keratoconus: a systematic review and meta-analysis. Transl Vis Sci Technol. 2019;8(3):38. doi:10.1167/tvst.8.3.38
  • Ambrósio JR, Borges JS, Costa-Ferreira C, et al. Implant of intrastromal corneal ring segments in keratoconus: results and correlations with preoperative corneal biomechanics. J Rev Bras Oftalmol. 2012;71:89–99. doi:10.1590/S0034-72802012000200004
  • Pinero D, Alió J, Barraquer R, Michael R. Corneal biomechanical changes after intracorneal ring segment implantation in keratoconus. Cornea. 2012;31(5):491–499. doi:10.1097/ICO.0b013e31821ee9f4
  • Sedaghat M-R, Momeni-Moghaddam H, Piñero DP, et al. Predictors of successful outcome following intrastromal corneal ring segments implantation. Curr Eye Res. 2019;44(7):707–715. doi:10.1080/02713683.2019.1594945
  • Feizi S, Montahai T, Moein H-R. Graft biomechanics following three corneal transplantation techniques. J Ophthalmic Vis Res. 2015;10(3):238. doi:10.4103/2008-322X.170347
  • Faramarzi A, Feizi S, Najdi D, Ghiasian L, Karimian F. Changes in corneal biomechanical properties after descemet stripping automated endothelial keratoplasty for pseudophakic bullous keratopathy. Cornea. 2016;35(1):20–24. doi:10.1097/ICO.0000000000000684
  • Shilova NF, Nahum Y, Adler A, et al. Comparative analysis of biomechanical parameters of the corneas following Descemet membrane endothelial keratoplasty and contralateral healthy corneas. Graefes Arch Clin Exp Ophthalmol. 2019;257(9):1925–1929. doi:10.1007/s00417-019-04387-y
  • Ziaei M, Vellara HR, Gokul A, Ali NQ, McGhee CNJ, Patel DV. Comparison of corneal biomechanical properties following penetrating keratoplasty and deep anterior lamellar keratoplasty for keratoconus. Clin Experiment Ophthalmol. 2020;48(2):174–182. doi:10.1111/ceo.13677
  • Hugo J, Granget E, Yin GH, Sampo M, Hoffart L. Intraocular pressure measurements and corneal biomechanical properties using a dynamic Scheimpflug analyzer, after several keratoplasty techniques, versus normal eyes. J Fr Ophtalmol. 2018;41(1):30–38. doi:10.1016/j.jfo.2017.06.006
  • Torres-Netto EA, Kling S, Spiru B, Sekundo W, Hafezi F. The relevance of Bowman’s layer in corneal biomechanics. Invest Ophthalmol Vis Sci. 2019;60(9):6808.
  • Dragnea DC, Birbal R, Ham L, et al. Bowman layer transplantation in the treatment of keratoconus. Eye Vis. 2018;5(1):24. doi:10.1186/s40662-018-0117-y
  • Hirasawa K, Nakakura S, Nakao Y, et al. Changes in corneal biomechanics and intraocular pressure following cataract surgery. Am J Ophthalmol. 2018;195:26–35. doi:10.1016/j.ajo.2018.07.025
  • Wallace HB, Misra SL, Li SS, McKelvie J. Biomechanical changes in the cornea following cataract surgery: a prospective assessment with the Corneal Visualisation Scheimpflug Technology. Clin Experiment Ophthalmol. 2019;47(4):461–468. doi:10.1111/ceo.13451
  • Ali M, Kamiya K, Shimizu K, Igarashi A, Ishii R. Clinical evaluation of corneal biomechanical parameters after posterior chamber phakic intraocular lens implantation. Cornea. 2014;33(5):470–474. doi:10.1097/ICO.0000000000000088
  • Spadea L, Cantera E, Cortes M, Conocchia NE, Stewart CW. Corneal ectasia after myopic laser in situ keratomileusis: a long-term study. Clin Ophthalmol. 2012;6:1801–1813. doi:10.2147/OPTH.S37249
  • Ambrósio R Jr. Post-LASIK Ectasia: twenty years of a Conundrum. Semin Ophthalmol. 2019;34(2):66–68. doi:10.1080/08820538.2019.1569075
  • Binder PS, Lindstrom RL, Stulting RD, et al. Keratoconus and corneal ectasia after LASIK. J Cataract Refract Surg. 2005;31(11):2035–2038. doi:10.1016/j.jcrs.2005.12.002
  • Randleman JB, Trattler WB, Stulting RD. Validation of the Ectasia Risk Score System for preoperative laser in situ keratomileusis screening. Am J Ophthalmol. 2008;145(5):813–818. doi:10.1016/j.ajo.2007.12.033
  • Santhiago MR, Smadja D, Gomes BF, et al. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1):87–95.e81. doi:10.1016/j.ajo.2014.04.002
  • Santhiago MR, Smadja D, Wilson SE, Krueger RR, Monteiro ML, Randleman JB. Role of percent tissue altered on ectasia after LASIK in eyes with suspicious topography. J Refract Surg. 2015;31(4):258–265. doi:10.3928/1081597X-20150319-05
  • Bohac M, Koncarevic M, Pasalic A, et al. Incidence and clinical characteristics of Post LASIK Ectasia: a review of over 30,000 LASIK cases. Semin Ophthalmol. 2018;33(7–8):869–877. doi:10.1080/08820538.2018.1539183
  • Roberts CJ, Dupps WJ Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991–998. doi:10.1016/j.jcrs.2014.04.013
  • Vinciguerra R, Ambrosio R Jr, Elsheikh A, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–810. doi:10.3928/1081597X-20160629-01
  • Del Buey MA, Cristóbal JA, Ascaso FJ, Lavilla L, Lanchares E. Biomechanical properties of the cornea in Fuchs’ corneal dystrophy. Invest Ophthalmol Vis Sci. 2009;50(7):3199–3202. doi:10.1167/iovs.08-3312
  • Clemmensen K, Hjortdal J. Intraocular pressure and corneal biomechanics in Fuchs’ endothelial dystrophy and after posterior lamellar keratoplasty. Acta Ophthalmol. 2014;92(4):350–354. doi:10.1111/aos.12137
  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013
  • Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–713;discussion 829–730. doi:10.1001/archopht.120.6.701
  • Trivli A, Koliarakis I, Terzidou C, et al. Normal-tension glaucoma: pathogenesis and genetics. Exp Ther Med. 2019;17(1):563–574. doi:10.3892/etm.2018.7011
  • Sit AJ, Pruet CM. Personalizing intraocular pressure: target intraocular pressure in the setting of 24-hour intraocular pressure monitoring. Asia Pac J Ophthalmol. 2016;5(1):17–22. doi:10.1097/APO.0000000000000178
  • Strouthidis NG, Girard MJ. Altering the way the optic nerve head responds to intraocular pressure-a potential approach to glaucoma therapy. Curr Opin Pharmacol. 2013;13(1):83–89. doi:10.1016/j.coph.2012.09.001
  • Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp Eye Res. 2009;88(4):799–807. doi:10.1016/j.exer.2009.02.003
  • Roberts MD, Sigal IA, Liang Y, Burgoyne CF, Downs JC. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(11):5675–5684. doi:10.1167/iovs.10-5411
  • Roberts MD, Liang Y, Sigal IA, et al. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci. 2010;51(1):295–307. doi:10.1167/iovs.09-4016
  • Satekenova E, Ko MWL, Kim JR Investigation of the optic nerve head morphology influence to the optic nerve head biomechanics - patient specific model. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference; 2019:5370–5373.
  • Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci. 2011;52(8):5656–5669. doi:10.1167/iovs.10-6927
  • Yang H, Ren R, Lockwood H, et al. The connective tissue components of optic nerve head cupping in monkey experimental glaucoma part 1: global change. Invest Ophthalmol Vis Sci. 2015;56(13):7661–7678. doi:10.1167/iovs.15-17624
  • Grytz R, Meschke G, Jonas JB. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol. 2011;10(3):371–382. doi:10.1007/s10237-010-0240-8
  • Ethier CR. Scleral biomechanics and glaucoma–a connection? Can J Ophthalmol. 2006;41(1):9–12, 14. doi:10.1016/S0008-4182(06)80060-8
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73. doi:10.1016/j.preteyeres.2004.06.001
  • Helmy H, Leila M, Zaki AA. Corneal biomechanics in asymmetrical normal-tension glaucoma. Clin Ophthalmol. 2016;10:503–510.
  • Kaushik S, Pandav SS, Banger A, Aggarwal K, Gupta A. Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am J Ophthalmol. 2012;153(5):840–849.e842. doi:10.1016/j.ajo.2011.10.032
  • Potop V, Corbu C, Coviltir V, et al. The importance of corneal assessment in a glaucoma suspect - a review. Rom J Ophthalmol. 2019;63(4):321–326. doi:10.22336/rjo.2019.51
  • Joda AA, Shervin MM, Kook D, Elsheikh A. Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Engin. 2016;19(9):943–953. doi:10.1080/10255842.2015.1077515
  • Eliasy A, Chen KJ, Vinciguerra R, et al. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res. 2018;175:98–102. doi:10.1016/j.exer.2018.06.013
  • Miki A, Yasukura Y, Weinreb R, et al. Dynamic Scheimpflug ocular biomechanical parameters in untreated primary open angle glaucoma eyes. Invest Ophthalmol Vis Sci. 2020;61(4):19. doi:10.1167/iovs.61.4.19
  • Vinciguerra R, Rehman S, Vallabh NA, et al. Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol. 2020;104(1):121–126. doi:10.1136/bjophthalmol-2018-313493
  • Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004;45(8):2660–2665. doi:10.1167/iovs.03-1363
  • Chansangpetch S, Panpruk R, Manassakorn A, et al. Impact of myopia on corneal biomechanics in glaucoma and nonglaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(12):4990. doi:10.1167/iovs.17-22219
  • Wanichwecharungruang B, Laophulsuk V, Sopitanont S, Vanichvaranont S, Harncharoen K. Central corneal thickness in the central retinal vein occlusion fellow eyes. J Med Assoc Thai. 2010;93(8):943–949.
  • Risk factors for central retinal vein occlusion. The Eye Disease Case-Control Study Group. Arch Ophthalmol. 1996;114(5):545–554. doi:10.1001/archopht.1996.01100130537006
  • Fard MA, Afzali M, Abdi P, et al. Optic nerve head morphology in nonarteritic anterior ischemic optic neuropathy compared to open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57(11):4632–4640. doi:10.1167/iovs.16-19442
  • Jabaly-Habib H, Naftali M, Habib GJ. Central corneal thickness measurements in nonarteritic anterior ischemic optic neuropathy patients: a Controlled Study. J Ophthalmol. 2014;2014. doi:10.1155/2014/904373
  • Uysal BS, Yulek F, Nalcacioglu P, Sarac O, Yorgun MA, Cagil N. Can corneal biomechanical properties give clues about elasticity of optic nerve scleral component in nonarteritic anterior ischemic optic neuropathy? J Neuro-Ophthalmol. 2016;36(3):285–289. doi:10.1097/WNO.0000000000000406
  • Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29(1):1–18. doi:10.1016/j.preteyeres.2009.08.003
  • Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295–317. doi:10.1016/j.mam.2012.04.005
  • van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 2014;232(2):151–164. doi:10.1002/path.4266
  • Cellini M, Pazzaglia A, Strobbe E, Gizzi C, Balducci N, Campos E. Corneal biomechanics in age-related macular degeneration. Can J Physiol Pharmacol. 2010;88(s246). doi:10.1139/Y10-036
  • Chatziralli I, Saitakis G, Dimitriou E, et al. ANGIOID STREAKS: a comprehensive review from pathophysiology to treatment. Retina (Philadelphia, Pa). 2019;39(1):1–11. doi:10.1097/IAE.0000000000002327
  • Germain DP, Boutouyrie P, Laloux B, Laurent S. Arterial remodeling and stiffness in patients with pseudoxanthoma elasticum. Arterioscler Thromb Vasc Biol. 2003;23(5):836–841. doi:10.1161/01.ATV.0000067428.19031.28
  • Germain DP. Pseudoxanthoma elasticum. Orphanet J Rare Dis. 2017;12(1):85. doi:10.1186/s13023-017-0639-8
  • Asano S, Nakajima K, Kure K, et al. Corneal biomechanical properties are associated with the activity and prognosis of Angioid Streaks. Sci Rep. 2018;8(1):8130. doi:10.1038/s41598-018-26430-4
  • Baptista PM, Marta AA, Marques JH, Abreu AC, Monteiro S, Menéres P, Pinto MDC The Role of Corneal Biomechanics in the Assessment of Ectasia Susceptibility Before Laser Vision Correction. Clin Ophthalmol. 2021;15:745–758. https://doi.org/10.2147/OPTH.S296744