114
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Peripapillary Halo in Inflammatory Papillitis of Birdshot Chorioretinopathy

, , , ORCID Icon, , & show all
Pages 2327-2333 | Published online: 03 Jun 2021

References

  • Jonas JB, Fernández MC, Naumann GO. Glaucomatous parapapillary atrophy: occurrence and correlations. Arch Ophthalmol. 1992;110(2):214–222.
  • Xu L, Li Y, Wang S, Wang Y, Wang Y, Jonas JB. Characteristics of highly myopic eyes: the Beijing Eye Study. Ophthalmology. 2007;114(1):121–126. doi:10.1016/j.ophtha.2006.05.071
  • See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls. Ophthalmology. 2009;116(5):840–847. doi:10.1016/j.ophtha.2008.12.005
  • Ryan SJ, Maumenee AE. Birdshot retinochoroidopathy. Am J Ophthalmol. 1980;89(1):31–45. doi:10.1016/0002-9394(80)90226-3
  • Silpa-Archa S, Cao JH, Boonsopon S, Lee J, Preble JM, Foster CS. Birdshot retinochoroidopathy: differences in clinical characteristics between patients with early and late age of onset. Ocul Immunol Inflamm. 2017;25(5):594–600. doi:10.3109/09273948.2016.1158278
  • Nussenblatt RB, Mittal KK, Ryan S, Green WR, Maumenee AE. Birdshot retinochoroidopathy associated with HLA-A29 antigen and immune responsiveness to retinal S-antigen. Am J Ophthalmol. 1982;94(2):147–158. doi:10.1016/0002-9394(82)90069-1
  • Brézin AP, Monnet D, Cohen JH, Levinson RD. HLA-A29 and birdshot chorioretinopathy. Ocul Immunol Inflamm. 2011;19(6):397–400. doi:10.3109/09273948.2011.619295
  • Rothova A, Berendschot TT, Probst K, van Kooij B, Baarsma GS. Birdshot chorioretinopathy: long-term manifestations and visual prognosis. Ophthalmology. 2004;111(5):954–959. doi:10.1016/j.ophtha.2003.09.031
  • Shah KH, Levinson RD, Yu F, et al. Birdshot chorioretinopathy. Surv Ophthalmol. 2005;50(6):519–541. doi:10.1016/j.survophthal.2005.08.004
  • Adhi M, Duker JS. Optical coherence tomography–current and future applications. Curr Opin Ophthalmol. 2013;24(3):213. doi:10.1097/ICU.0b013e32835f8bf8
  • Copete S, Flores-Moreno I, Montero JA, Duker JS, Ruiz-Moreno JM. Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol. 2014;98(3):334–338. doi:10.1136/bjophthalmol-2013-303904
  • Liu X, Khodeiry MM, Lin D, et al. The association of acute cerebrospinal fluid pressure reduction with choroidal thickness. Curr Eye Res;2021. 1–8. doi:10.1080/02713683.2021.1874024
  • Jonas JB. Clinical implications of peripapillary atrophy in glaucoma. Curr Opin Ophthalmol. 2005;16(2):84–88. doi:10.1097/01.icu.0000156135.20570.30
  • Jonas JB, Martus P, Horn FK, Jünemann A, Korth M, Budde WM. Predictive factors of the optic nerve head for development or progression of glaucomatous visual field loss. Invest Ophthalmol Vis Sci. 2004;45(8):2613–2618. doi:10.1167/iovs.03-1274
  • Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801–810. doi:10.1016/j.ajo.2008.12.010
  • Jonas JB, Jonas SB, Jonas RA, et al. Parapapillary atrophy: histological gamma zone and delta zone. PLoS One. 2012;7(10):e47237. doi:10.1371/journal.pone.0047237
  • Kim HR, Weinreb RN, Zangwill LM, Suh MH. Characteristics of focal gamma zone parapapillary atrophy. Invest Ophthalmol Vis Sci. 2020;61(3):17. doi:10.1167/iovs.61.3.17
  • Rockwood EJ, Anderson DR. Acquired peripapillary changes and progression in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1988;226(6):510–515. doi:10.1007/BF02169197
  • Levinson RD, Brezin A, Rothova A, Accorinti M, Holland GN. Research criteria for the diagnosis of birdshot chorioretinopathy: results of an international consensus conference. Am J Ophthalmol. 2006;141(1):185–187. doi:10.1016/j.ajo.2005.08.025
  • Elschnig A. Das Colobom am Sehnerveneintritte und der Conus nach unten. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1900;51(3):391–430. doi:10.1007/BF01938806
  • Uchida H, Ugurlu S, Caprioli J. Increasing peripapillary atrophy is associated with progressive glaucoma. Ophthalmology. 1998;105(8):1541–1545. doi:10.1016/S0161-6420(98)98044-7
  • Primrose J. Early signs of the glaucomatous disc. Br J Ophthalmol. 1971;55(12):820. doi:10.1136/bjo.55.12.820
  • Rath E, Rehany U, Linn S, Rumelt S. Correlation between optic disc atrophy and aetiology: anterior ischaemic optic neuropathy vs optic neuritis. Eye. 2003;17(9):1019–1024. doi:10.1038/sj.eye.6700691
  • Brasil OFM, Brasil MVOM, Japiassú RM, et al. Fundus changes evaluation in degenerative myopia. Arq Bras Oftalmol. 2006;69(2):203–206. doi:10.1590/S0004-27492006000200013
  • Nonaka A, Hangai M, Akagi T, et al. Biometric features of peripapillary atrophy beta in eyes with high myopia. Invest Ophthalmol Vis Sci. 2011;52(9):6706–6713. doi:10.1167/iovs.11-7580
  • Chui TY, Zhong Z, Burns SA. The relationship between peripapillary crescent and axial length: implications for differential eye growth. Vision Res. 2011;51(19):2132–2138. doi:10.1016/j.visres.2011.08.008
  • Curcio CA, Saunders PL, Younger PW, Malek G. Peripapillary chorioretinal atrophy: bruch’s membrane changes and photoreceptor loss. Ophthalmology. 2000;107(2):334–343. doi:10.1016/S0161-6420(99)00037-8
  • Sayed MS, Margolis M, Chen JL, Gregori G, Lee RK. Shields gray crescents masquerading as glaucomatous cupping of the optic nerve head. Ophthalmol Glaucoma. 2018;1(2):99–107. doi:10.1016/j.ogla.2018.08.001
  • Torres LA, Sharpe GP, Vianna JR, Nicolela MT, Chauhan BC. Anatomical features of gray crescent. JAMA Ophthalmol. 2018;136(12):1419–1420. doi:10.1001/jamaophthalmol.2018.3403
  • Davies IJ, Muir KW, Halabis JA, Stinnett SS, Allingham RR, Shields MB. Gray optic disc crescent: evaluation of anatomic correlate by spectral-domain OCT. Ophthalmol Glaucoma. 2019;2(2):120–125. doi:10.1016/j.ogla.2018.11.005
  • Garcia-Garcia O, Jordan-Cumplido S, Subira-Gonzalez O, Garcia-Bru P, Arias L, Caminal-Mitjana JM. Feasibility of swept-source OCT for active birdshot chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(8):1493–1502. doi:10.1007/s00417-017-3655-4
  • Teussink MM, Huis In Het Veld PI, de Vries LA, Hoyng CB, Klevering BJ, Theelen T. Multimodal imaging of the disease progression of birdshot chorioretinopathy. Acta Ophthalmol (Copenh). 2016;94(8):815–823. doi:10.1111/aos.13114
  • Thorne JE, Jabs DA, Peters GB, Hair D, Dunn JP, Kempen JH. Birdshot retinochoroidopathy: ocular complications and visual impairment. Am J Ophthalmol. 2005;140(1):45. e41–45. e48. doi:10.1016/j.ajo.2005.01.035
  • Rush RB, Goldstein DA, Callanan DG, Meghpara B, Feuer WJ, Davis JL. Outcomes of birdshot chorioretinopathy treated with an intravitreal sustained-release fluocinolone acetonide–containing device. Am J Ophthalmol. 2011;151(4):630–636. doi:10.1016/j.ajo.2010.10.005
  • Talisa E, Bonini Filho MA, Adhi M, Duker JS. Retinal and choroidal vasculature in birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography angiography. Retina. 2015;35(11):2392–2399. doi:10.1097/IAE.0000000000000744
  • Gaudio P, Kaye D, Crawford JB. Histopathology of birdshot retinochoroidopathy. Br J Ophthalmol. 2002;86(12):1439–1441. doi:10.1136/bjo.86.12.1439
  • Chong GT, Lee RK. Glaucoma versus red disease: imaging and glaucoma diagnosis. Curr Opin Ophthalmol. 2012;23(2):79–88. doi:10.1097/ICU.0b013e32834ff431
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73. doi:10.1016/j.preteyeres.2004.06.001
  • Khanamiri HN, Rao NA. Serpiginous choroiditis and infectious multifocal serpiginoid choroiditis. Surv Ophthalmol. 2013;58(3):203–232. doi:10.1016/j.survophthal.2012.08.008
  • Lavezzo MM, Sakata VM, Morita C, et al. Vogt-Koyanagi-Harada disease: review of a rare autoimmune disease targeting antigens of melanocytes. Orphanet J Rare Dis. 2016;11(1):1–21. doi:10.1186/s13023-016-0412-4