98
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Central Corneal Thickness Among Filipino Patients in an Ambulatory Eye Surgery Center Using Anterior Segment Optical Coherence Tomography

ORCID Icon &
Pages 2653-2664 | Published online: 23 Jun 2021

References

  • Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–1720. doi:10.1016/S0140-6736(04)16257-0
  • Nickells RW, Howell GR, Soto I, John SW. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci. 2012;35(1):153–179. doi:10.1146/annurev.neuro.051508.135728
  • Tham Y-C, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi:10.1136/bjo.2005.081224
  • Colombo L, Fogagnolo P, Montesano G, et al. Strategies to estimate the characteristics of 24-hour IOP curves of treated glaucoma patients during office hours. BMC Ophthalmol. 2016;16(1):15. doi:10.1186/s12886-016-0191-7
  • Herndon LW. Measuring intraocular pressure-adjustments for corneal thickness and new technologies. Curr Opin Ophthalmol. 2006;17(2):115–119. doi:10.1097/01.icu.0000193093.05927.a1
  • Brandt JD, Beiser JA, Kass MA, et al. Central corneal thickness in the Ocular Hypertension Treatment Study (OHTS). Ophthalmology. 2001;108(10):1779–1788. doi:10.1016/S0161-6420(01)00760-6
  • Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with Goldmann applanation tonometry. Invest Ophthalmol Vis Sci. 2004;45(9):3118–3121. doi:10.1167/iovs.04-0018
  • McCafferty S, Tetrault K, McColgin A, et al. Intraocular pressure measurement accuracy and repeatability of a modified Goldman prism: multicenter randomized clinical trial. Am J Ophthalmol. 2018;196:145–153. doi:10.1016/j.ajo.2018.08.051
  • Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–720. doi:10.1001/archopht.120.6.714
  • Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol. 1999;117(1):14–16. doi:10.1001/archopht.117.1.14
  • Shetgar AC, Mulimani MB. The central corneal thickness in normal tension glaucoma, primary open angle glaucoma and ocular hypertension. J Clin Diagn Res. 2013;7(6):1063–1067. doi:10.7860/JCDR/2013/4292.3022
  • Aghaian E, Choe JE, Lin S, et al. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology. 2004;111(12):2211–2219. doi:10.1016/j.ophtha.2004.06.013
  • Badr M, Masis Solano M, Amoozgar B, Nguyen A, Porco T, Lin S. Central corneal thickness variances among different asian ethnicities in glaucoma and nonglaucoma patients. J Glaucoma. 2019;28(3):223–230. doi:10.1097/ijg.0000000000001180
  • Ishibazawa A, Igarashi S, Hanada K, et al. Central corneal thickness measurement by Fourier domain optical coherence tomography, ocular response analyzer and ultrasound pachymetry. Cornea. 2011;30(6):615–619. doi:10.1097/ICO.0b013e3181d00800
  • Chang SW, Su PF, Lo AY, Huang JY. Central corneal thickness measurement by Fourier domain optical coherence tomography, ocular response analyzer and ultrasound pachymetry. Taiwan J Ophthalmol. 2014;4(4):163–169. doi:10.1016/j.tjo.2014.08.001
  • Wongchaisuwat N, Metheetrairat A, Chonpimai P, Prabhasawat P. Comparison of central corneal thickness measurements in corneal edema using ultrasound pachymetry, visante anterior-segment optical coherence tomography, cirrus optical coherence tomography, and pentacam scheimpflug camera tomography. Clin Ophthalmol. 2018;12:1865–1873. doi:10.2147/OPTH.S172159
  • Kim HY, Budenz DL, Lee PS, Feuer WJ, Barton K. Comparison of central corneal thickness using anterior segment optical coherence tomography versus ultrasound pachymeter. Am J Ophthalmol. 2008;145(2):228–232. doi:10.1016/j.ajo.2007.09.030
  • Binnawi KH, Elzubeir H, Osman E, Abdu M, Abdu M. Central corneal thickness measurement using ultrasound optical coherence tomography, and TMS-5 topographer. Oman J Ophthalmol. 2019;12(1):15–19. doi:10.4103/ojo.OJO_96_2018
  • Babbar S, Marterl MR, Martel JB. Comparison of central corneal thickness by ultrasound pachymeter, optical coherence tomography and specular microscopy. New Front Ophthalmol. 2017;3(3):1–6. doi:10.15761/NFO.1000164
  • Tang Y, Li C, Chen Y, et al. Effect of intraocular pressure on aerosol density generated by noncontact tonometer measurement. J Glaucoma. 2020;29(11):1001–1005. doi:10.1097/IJG.0000000000001669
  • Shetty R, Balakrishnan N, Shroff S, et al. Quantitative high-speed assessment of droplet and aerosol from an eye after impact with an air-puff amid COVID-19 scenario. J Glaucoma. 2020;29(11):1006–1016. doi:10.1097/IJG.0000000000001672
  • Wang SY, Melles R, Lin SC. The impact of central corneal thickness on the risk for glaucoma in a large multiethnic population. J Glaucoma. 2014;23(9):606–612. doi:10.1097/IJG.0000000000000088
  • Shimmyo M, Orloff PN. Corneal thickness and axial length. Am J Ophthalmol. 2005;139(3):553–554. doi:10.1016/j.ajo.2004.08.061
  • Kida T, Fukumoto M, Sato T, et al. Clinical features of Japanese patients with central retinal vein occlusion complicated by normal-tension glaucoma: a Retrospective Study. Ophthalmologica. 2017;237(3):173–179. doi:10.1159/000459636
  • Ikeda Y, Mori K, Tada K, et al. Comparison study of intraocular pressure reduction efficacy and safety between latanoprost and tafluprost in Japanese with normal-tension glaucoma. Clin Ophthalmol. 2016;10:1633–1637. doi:10.2147/OPTH.S108213
  • Soriano JG, Lat-Luna MML, Khu PM. Correlating central corneal thickness and intraocular pressure in ocular hypertension and glaucoma. Philipp J Ophthalmol. 2007;32(1):4–8.
  • Chan EW, Li X, Tham Y-C, et al. Glaucoma in Asia: regional prevalence variations and future projections. Br J Ophthalmol. 2016;100(1):78–85. doi:10.1136/bjophthalmol-2014-306102
  • Ventura ACS, Bohnke M, Mojon DS. Central corneal thickness measurements in patients with normal tension glaucoma, primary open-angle glaucoma, pseudoexfoliation glaucoma, or ocular hypertension. Br J Ophthalmol. 2001;85(7):792–795. doi:10.1136/bjo.85.7.792
  • Mallick J, Devi L, Malik PK, Mallick J. Updates on normal tension glaucoma. J Ophthalmic Vis Res. 2016;11(2):204–208. doi:10.4103/2008-322X.183914
  • Cheng J-W, Zong Y, Zeng Y-Y, Wei R-L. The prevalence of primary angle closure glaucoma in adult Asians: a systematic review and metaanalysis. PLoS One. 2014;9(7):e103222. doi:10.1371/journal.pone.0103222
  • Vajaranant TS, Nayak S, Wilensky JT, Joslin CE. Gender and glaucoma: what we know and what we need to know. Curr Opin Ophthalmol. 2010;21(2):91–99. doi:10.1097/ICU.0b013e3283360b7e
  • Schlote T, Tzamalis A, Kynigopoulos M. Central corneal thickness during treatment with travoprost 0.004% in glaucoma patients. J Ocul Pharmacol Ther. 2009;25(5):459–462. doi:10.1089/jop.2009.0007
  • Arcieri ES, Pierre Filho PTP, Wakamatsu TH, et al. The effects of prostaglandin analogues on the blood aqueous barrier and corneal thickness of phakic patients with primary open-angle glaucoma and ocular hypertension. Eye. 2008;22(2):179–183. doi:10.1038/sj.eye.6702542
  • Meda R, Wang Q, Paoloni D, et al. The impact of chronic use of prostaglandin analogues on the biomechanical properties of the cornea in patients with primary open-angle glaucoma. Br J Ophthalmol. 2017;101(2):120–125. doi:10.1136/bjophthalmol-2016-308432