117
Views
2
CrossRef citations to date
0
Altmetric
Original Research

The Retinal Posterior Pole in Early Parkinson’s Disease: A Fundus Perimetry and SD-OCT Study

, ORCID Icon, , ORCID Icon, , , , , & show all
Pages 4005-4014 | Published online: 04 Oct 2021

References

  • Williams DR, Litvan I. Parkinsonian syndromes. Continuum. 2013;19(5Movement Disorders):1189–1212.
  • Parnetti L, Castrioto A, Chiasserini D, et al. Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol. 2013;9(3):131–140. doi:10.1038/nrneurol.2013.10
  • Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson’s disease. Brain. 2004;127(Pt 8):1693–1705. doi:10.1093/brain/awh198
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. doi:10.1016/S0140-6736(14)61393-3
  • Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548–560. doi:10.1001/jama.2019.22360
  • Delenclos M, Jones DR, McLean PJ, Uitti RJ. Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord. 2016;22(Suppl 1):S106–110. doi:10.1016/j.parkreldis.2015.09.048
  • Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson’s disease: possible value as biomarkers. Mov Disord. 2018;33(9):1390–1406. doi:10.1002/mds.27454
  • Lad EM, Mukherjee D, Stinnett SS, et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS One. 2018;13(2):e0192646. doi:10.1371/journal.pone.0192646
  • Cesareo M, Ciuffoletti E, Martucci A, et al. Assessment of the retinal posterior pole in dominant optic atrophy by spectral-domain optical coherence tomography and microperimetry. PLoS One. 2017;12(3):e0174560. doi:10.1371/journal.pone.0174560
  • Pillai JA, Bermel R, Bonner-Jackson A, et al. Retinal Nerve Fiber Layer Thinning in Alzheimer’s Disease: a Case-Control Study in Comparison to Normal Aging, Parkinson’s Disease, and Non-Alzheimer’s Dementia. Am J Alzheimers Dis Other Demen. 2016;31(5):430–436. doi:10.1177/1533317515628053
  • Satue M, Garcia-Martin E, Fuertes I, et al. Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye. 2013;27(4):507–514. doi:10.1038/eye.2013.4
  • Moreno-Ramos T, Benito-Leon J, Villarejo A, Bermejo-Pareja F. Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimers Dis. 2013;34(3):659–664. doi:10.3233/JAD-121975
  • Moschos MM, Chatziralli IP. Evaluation of choroidal and retinal thickness changes in parkinson’s disease using spectral domain optical coherence tomography. Semin Ophthalmol. 2018;33(4):494–497. doi:10.1080/08820538.2017.1307423
  • Ma LJ, Xu LL, Mao CJ, et al. Progressive Changes in the Retinal Structure of Patients with Parkinson’s Disease. J Parkinsons Dis. 2018;8(1):85–92. doi:10.3233/JPD-171184
  • Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–1601. doi:10.1002/mds.26424
  • Mailankody P, Lenka A, Pal PK. The role of optical coherence tomography in parkinsonism: a critical review. J Neurol Sci. 2019;403:67–74. doi:10.1016/j.jns.2019.06.009
  • Huang L, Wang C, Wang W, Wang Y, Zhang R. The specific pattern of retinal nerve fiber layer thinning in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. 2020;20:1–10.
  • Huang L, Zhang D, Ji J, Wang Y, Zhang R. Central retina changes in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. 2020;10:1–9.
  • Garcia-Martin E, Satue M, Fuertes I, et al. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology. 2012;119(10):2161–2167. doi:10.1016/j.ophtha.2012.05.003
  • Rohani M, Langroodi AS, Ghourchian S, Falavarjani KG, SoUdi R, Shahidi G. Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease. Neurol Sci. 2013;34(5):689–693. doi:10.1007/s10072-012-1125-7
  • Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S. Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol. 2010;4:1427–1432.
  • Albrecht P, Muller AK, Sudmeyer M, et al. Optical coherence tomography in parkinsonian syndromes. PLoS One. 2012;7(4):e34891. doi:10.1371/journal.pone.0034891
  • Chorostecki J, Seraji-Bozorgzad N, Shah A, et al. Characterization of retinal architecture in Parkinson’s disease. J Neurol Sci. 2015;355(1–2):44–48. doi:10.1016/j.jns.2015.05.007
  • Unlu M, Gulmez Sevim D, Gultekin M, Karaca C. Correlations among multifocal electroretinography and optical coherence tomography findings in patients with Parkinson’s disease. Neurol Sci. 2018;39(3):533–541. doi:10.1007/s10072-018-3244-2
  • Martinez-Navarrete GC, Martin-Nieto J, Esteve-Rudd J, Angulo A, Cuenca N. Alpha synuclein gene expression profile in the retina of vertebrates. Mol Vis. 2007;13:949–961.
  • Ortuno-Lizaran I, Beach TG, Serrano GE, Walker DG, Adler CH, Cuenca N. Phosphorylated alpha-synuclein in the retina is a biomarker of Parkinson’s disease pathology severity. Mov Disord. 2018;33(8):1315–1324. doi:10.1002/mds.27392
  • Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol. 1997;12(1):25–31.
  • Rideout HJ, Lang-Rollin I, Stefanis L. Involvement of macroautophagy in the dissolution of neuronal inclusions. Int J Biochem Cell Biol. 2004;36(12):2551–2562. doi:10.1016/j.biocel.2004.05.008
  • Xilouri M, Brekk OR, Stefanis L. Autophagy and alpha-synuclein: relevance to Parkinson’s disease and related synucleopathies. Mov Disord. 2016;31(2):178–192. doi:10.1002/mds.26477
  • Markossian KA, Kurganov BI. Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemistry (Mosc). 2004;69(9):971–984. doi:10.1023/B:BIRY.0000043539.07961.4c
  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–1295. doi:10.1126/science.1101738
  • Ben-Shachar D, Riederer P, Youdim MB. Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem. 1991;57(5):1609–1614. doi:10.1111/j.1471-4159.1991.tb06358.x
  • Shu W, Dunaief JL. Potential treatment of retinal diseases with iron chelators. Pharmaceuticals. 2018;11(4). doi:10.3390/ph11040112
  • Baksi S, Singh N. alpha-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson’s disease. Sci Rep. 2017;7(1):12843. doi:10.1038/s41598-017-12862-x
  • Ming W, Palidis DJ, Spering M, McKeown MJ. Visual contrast sensitivity in early-stage Parkinson’s disease. Invest Ophthalmol Vis Sci. 2016;57(13):5696–5704. doi:10.1167/iovs.16-20025
  • Satue M, Rodrigo MJ, Obis J, et al. Evaluation of Progressive Visual Dysfunction and Retinal Degeneration in Patients With Parkinson’s Disease. Invest Ophthalmol Vis Sci. 2017;58(2):1151–1157. doi:10.1167/iovs.16-20460
  • Uc EY, Rizzo M, Anderson SW, Qian S, Rodnitzky RL, Dawson JD. Visual dysfunction in Parkinson disease without dementia. Neurology. 2005;65(12):1907–1913. doi:10.1212/01.wnl.0000191565.11065.11
  • Ortuno-Lizaran I, Sanchez-Saez X, Lax P, et al. Dopaminergic retinal cell loss and visual dysfunction in Parkinson disease. Ann Neurol. 2020;88(5):893–906. doi:10.1002/ana.25897
  • Regan D, Neima D. Low-contrast letter charts in early diabetic retinopathy, ocular hypertension, glaucoma, and Parkinson’s disease. Br J Ophthalmol. 1984;68(12):885–889. doi:10.1136/bjo.68.12.885
  • Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci. 1990;31(11):2473–2475.
  • Nguyen-Legros J. Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat. 1988;10(2):137–144. doi:10.1007/BF02307822
  • Tsironi EE, Dastiridou A, Katsanos A, et al. Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol. 2012;12:54. doi:10.1186/1471-2415-12-54
  • Yenice O, Onal S, Midi I, Ozcan E, Temel A, Ig D. Visual field analysis in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2008;14(3):193–198. doi:10.1016/j.parkreldis.2007.07.018
  • Garcia-Martin E, Rodriguez-Mena D, Satue M, et al. Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity. Invest Ophthalmol Vis Sci. 2014;55(2):696–705. doi:10.1167/iovs.13-13062
  • Moschos MM, Tagaris G, Markopoulos I, et al. Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol. 2011;21(1):24–29. doi:10.5301/EJO.2010.1318
  • Husman A, Padhi TR, Chen A, et al. Comparison of fundus-guided microperimetry and multifocal electroretinography for evaluating hydroxychloroquine maculopathy. Transl Vis Sci Technol. 2019;8(5):19. doi:10.1167/tvst.8.5.19
  • Santos AR, Raimundo M, Alves D, et al. Microperimetry and mfERG as functional measurements in diabetic macular oedema undergoing intravitreal ranibizumab treatment. Eye. 2021;35(5):1384–1392. doi:10.1038/s41433-020-1054-2
  • Han J, Lee JY, Kim TW, et al. Retinal thinning associates with nigral dopaminergic loss in de novo Parkinson disease. Neurology. 2018;91(11):e1003–e1012. doi:10.1212/WNL.0000000000006157
  • Midena E, Vujosevic S, Cavarzeran F; Microperimetry Study G. Normal values for fundus perimetry with the microperimeter MP1. Ophthalmology. 2010;117(8):1571–1576, 1576 e1571. doi:10.1016/j.ophtha.2009.12.044