903
Views
3
CrossRef citations to date
0
Altmetric
Review

Ophthalmological Manifestations of Oculocutaneous and Ocular Albinism: Current Perspectives

, , , , , , & ORCID Icon show all
Pages 1569-1587 | Published online: 24 May 2022

References

  • Biswas S, Lloyd IC. Oculocutaneous albinism. Arch Dis Child. 1999;80(6):565–569.
  • Marti A, Lasseaux E, Ezzedine K, et al. Lessons of a day hospital: comprehensive assessment of patients with albinism in a European setting. Pigment Cell Melanoma Res. 2018;31(2):318–329.
  • Kamaraj B, Purohit R. Mutational analysis of oculocutaneous albinism: a compact review. BioMed Res Int. 2014;2014:905472.
  • Hutton SM, Spritz RA. Comprehensive analysis of oculocutaneous albinism among non-hispanic caucasians shows that OCA1 is the most prevalent OCA type. J Invest Dermatol. 2008;128:2442–2450.
  • Manga P, Kerr R, Ramsay M, Kromberg JGR. Biology and genetics of oculocutaneous albinism and vitiligo-common pigmentation disorders in Southern Africa. S Afr Med J. 2013;103:984-988.
  • Grønskov K, Brondum-Nielsen K. Oculocutaneous albinism. Orphanet J Rare Dis. 2007;2:43.
  • Simeonov DR, Wang X, Wang C, et al. DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics. Hum Mutat. 2013;34:827-835.
  • Chan HW, Schiff ER, Tailor VK, et al. Prospective study of the phenotypic and mutational spectrum of ocular albinism and oculocutaneous albinism. Genes (Basel). 2021;12(4):508.
  • Camand O, Marchant D, Boutboul S, et al. Mutation analysis of the tyrosinase gene in oculocutaneous albinism. Hum Mutat. 2001;17(4):352.
  • Olivares C, Jiménez-Cervantes C, Lozano JA, Solano F, García-Borrón JC. The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochem J. 2001;354(1):131–139.
  • Urabe K, Aroca P, Hearing VJ. From gene to protein: determination of melanin synthesis. Pigment Cell Res. 1993;6(4):186–192.
  • Schiaffino MV. Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol. 2010;42:1094–1104.
  • David CV. Oculocutaneous albinism. Cutis. 2013;3:91.
  • Kromberg JGR, Bothwell J, Kidson SH, Manga P, Kerr R, Jenkins T. Types of Albinism in the Black Southern Africa Population. East Afr Med J. 2012;89:20–27.
  • Suzuki T, and Tomita Y. Recent advances in genetic analyses of oculocutaneous albinism types 2 and 4. J Dermatol Sci. 2008 Jul;51(1):1-9.
  • Inagaki K, Suzuki T, Shimizu H, et al. Oculocutaneous albinism type 4 is one of the most common types of albinism in Japan. Am J Hum Genet. 2004;74(3):466–471.
  • Okamura K, Suzuki T. Current landscape of Oculocutaneous Albinism in Japan. Pigment Cell Melanoma Res. 2021;34:190–203.
  • Scheinfeld NS. Syndromic albinism: a review of genetics and phenotypes. Dermatol Online J. 2003;9(5):5.
  • Mansouri Nejad SE, Yazdan Panah MJ, Tayyebi Meibodi N, et al. Griscelli Syndrome: a Case Report. Iran J Child Neurol. 2014;8(4):72–75.
  • Najmuddin F, Rai R, Lahiri K, Cholera PP. Elejalde Syndrome: the Silvery Hair Syndrome. Int J Genet Sci. 2015;2(1):734.
  • Tezcan I, Demir E, Aşan E, Kale G, Müftüoğlu SF, Kotiloğlu E. A new case of oculocerebral hypopigmentation syndrome (Cross syndrome) with additional findings. Clin Genet. 1997;51(2):118–121.
  • Reddy RR, Babu BM, Venkateshwaramma B, Hymavathi C. Silvery hair syndrome in two cousins: Chediak-Higashi syndrome vs Griscelli syndrome, with rare associations. Int J Trichology. 2011;3(2):107–111.
  • Zhou M, Gradstein L, Gonzales JA, Tsilou ET, Gahl WA, Chan -C-C. Ocular Pathologic Features of Hermansky-Pudlak Syndrome Type 1 in an Adult. Arch Ophthalmol. 2006;124(7):1048–1051.
  • Power B, Ferreira CR, Chen D, et al. Hermansky-Pudlak syndrome and oculocutaneous albinism in Chinese children with pigmentation defects and easy bruising. Orphanet J Rare Dis. 2019;14(1):52.
  • Desai N, Weisfeld-Adams JD, Brodie SE, et al. Optic neuropathy in late-onset neurodegenerative Chédiak-Higashi Syndrome. Br J Ophthalmol. 2016;100(5):704–707.
  • Spritz RA, Bailin T, Nicholls RD, et al. Hypopigmentation in the Prader-Willi syndrome correlates with P gene deletion but not with haplotype of the hemizygous P allele. Am J Med Genet. 1997;71(1):57–62.
  • Saitoh S, Oiso N, Wada T, et al. Oculocutaneous albinism type 2 with a P gene missense mutation in a patient with Angelman syndrome. JMed Genet. 2000;37:392–394.
  • Creel DJ, Bendel CM, Wiesner GL, Wirtschafter JD, Arthur DC, King RA. Abnormalities of the central visual pathways in Prader-Willi syndrome associated with hypopigmentation. N Engl J Med. 1986;314(25):1606–1609.
  • Ramsay M, Colman MA, Stevens G, et al. The tyrosinase-positive oculocutaneous albinism locus maps to chromosone 15q11.2-q12. Am J Hum Genet. 1992;51(4):879-84.
  • Apkarian P, Spekreijse H, Van Swaay E, Van schooneveld M. Visual evoked potentials in Prader-Willi syndrome. Doc Ophthalmol. 1989;71:355-367.
  • Fitzgerald K, Cibic GW. The vlaue of flash visual evoked potentials in albinism. J Pediatr Ophthalmol Strabismus. 1994;31(1):18-25.
  • Thompson DA, Kriss A, Cottrell S, Taylor D. Visual evoked potential evidence of albino-like chiasmal misrouting in a patient with Angelman syndrome with no ocular features of albinism. Dev Med Child Neurol. 1999;41(9):633-638.
  • Byrne S, Dionisi-Vici C, Smith L, et al. Vici Syndrome: a review. Orphanet J Rare Dis. 2016;11:21.
  • Filloux FM, Hoffman RO, Viskochil DH, Jungbluth H, Creel DJ. Ophthalmologic features of Vici syndrome. J Pediatr Ophthalmol Strabismus. 2014;51(4):214-220.
  • Goldberg MF. Waardenburg's syndrome with fundus and other anomalies. Arch Ophthalmol. 1996;76(6):797-810.
  • Ahmed Jan N, Mui RK, Masood S. Waardenburg Syndrome. Treasure Island (FL) StatPearls Publishing; 2021.
  • Newton VE. Clinical features of the Waardenburg syndromes. Adv Otorhinolaryngol. 2002;61:201-208.
  • Wollnik B, Tukel T, Uyguner O, et al. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome. Am J Med Genet A.2003;122(1):42-45.
  • Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet. 1994;8(3):251-255.
  • Mullner-Eidenbock A, Moser E, Frisch H, Read AP. Waardenburg syndrome type 2 in a Turkish family: implications for the importance of the pattern of fundus pigmentation. Br J Ophthalmol. 2001;85(11):1384-1386.
  • Ohno N, Kiyosawa M, Mori H, Wang WF, Takase H, Mochizuki M. Clinical findings in Japanese patients with Waardenburg syndrome type 2. Jpn J Ophthalmol. 2003;47(1):77-84.
  • Tsang SH, Sharma T. X-linked Ocular Albinism. Tissue Eng. 2018;1085:49–52.
  • Garner A, Jay BS. Macromelanosomes in X-linked ocular albinism. Histopathology. 1980;4:243–254.
  • Palmisano I, Bagnato P, Palmigiano A, et al. The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum Mol Genet. 2008;17:3487–3501.
  • Schiaffino MV, D’Addio M, Alloni A, et al. Ocular albinism: evidence for a defect in an intracellular signal transduction system. Nat Genet. 1999;23(1):108–112.
  • McKay BS. Pigmentation and vision: is GPR143 in control? J Neurosci Res. 2019;97(1):77–87.
  • Summers CG. Albinism: classification, clinical characteristics, and recent findings. Optom Vis Sci off Publ Am Acad Optom. 2009;86(6):659–662.
  • Lekalakala PT. Oculocutaneous Albinism and Squamous Cell Carcinoma of the Skin of the Head and Neck in Sub-Saharan Africa. J Skin Cancer. 2015;2015:167847.
  • Neveu MM, Holder GE, Sloper JJ, Jeffery G. Optic chiasm formation in humans is independent of foveal development. Eur J Neurosci. 2005;22(7):1825–1829.
  • Oetting WS, Summers CG, King RA. Albinism and the associated ocular defects. Metab Pediatr Syst Ophthalmol. 1994;17(1–4):5–9.
  • King RA, Summers CG. Albinism. Dermatol Clin. 1988;6(2):217–228.
  • Mallipatna A, Vinekar A, Jayadev C, et al. The use of handheld spectral domain optical coherence tomography in pediatric ophthalmology practice: our experience of 975 infants and children. Indian J Ophthalmol. 2015;63(7):586–593.
  • Lee DJ, Woertz EN, Visotcky A, et al. The Henle Fiber Layer in Albinism: comparison to Normal and Relationship to Outer Nuclear Layer Thickness and Foveal Cone Density. Invest Ophthalmol Vis Sci. 2018;59(13):5336–5348. doi:10.1167/iovs.18-24145
  • Wilk MA, McAllister JT, Cooper RF, et al. Relationship between foveal cone specialization and pit morphology in albinism. Invest Ophthalmol Vis Sci. 2014;55(7):4186–4198.
  • Hertle RW. Albinism: particular Attention to the Ocular Motor System. Middle East Afr J Ophthalmol. 2013;20(3):248–255.
  • Dysli M, Abegg M. Nystagmus Does Not Limit Reading Ability in Albinism. PLoS One. 2016;11(7):e0158815.
  • Yahalom C, Tzur V, Blumenfeld A, et al. Refractive profile in oculocutaneous albinism and its correlation with final visual outcome. Br J Ophthalmol. 2012;96(4):537–539.
  • Wildsoet CF, Oswald PJ, Clark S. Albinism: its Implications for Refractive Development. Invest Ophthalmol Vis Sci. 2000;41(1):1–7.
  • Schweigert A, Lunos S, Connett J, Summers CG. Changes in refractive errors in albinism: a longitudinal study over the first decade of life. J AAPOS off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2018;22(6):462–466.
  • Kaur A, Akhila K, Sahu SK, Padhy SK. Bilateral pellucid marginal degeneration with oculocutaneous albinism. BMJ Case Rep. 2021;14(6):e243640.
  • King RA, Summers CG. Albinism: Ocular And Oculocutaneous Albinism and Hermansky–Pudlak Syndrome. Manag Genet Syndr 2010:53-68.
  • Okulicz JF, Shah RS, Schwartz RA, Janniger CK. Oculocutaneous albinism. J Eur Acad Dermatol Venereol. 2003;17(3):251–256.
  • Mann I. The Development of the Human Eye. London: British Medical Association; 1964.
  • Casey MA, Lusk S, Kwan KM. Build me up optic cup: intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev Biol. 2021;476:128–136.
  • Heavner W, Pevny L. Eye development and retinogenesis. Cold Spring Harb Perspect Biol. 2012;4(12):76.
  • Guillery RW, Mason CA, Taylor JS. Developmental determinants at the mammalian optic chiasm. J Neurosci. 1995;15(7 Pt 1):4727–4737.
  • Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci. 2019;20(13):3282.
  • Williams SE, Mason CA, Herrera E. The optic chiasm as a midline choice point. Curr Opin Neurobiol. 2004;14(1):51–60.
  • Colello RJ, Guillery RW. The early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axonal course. Development. 1990;108(3):515–523.
  • Fukuda Y, Sawai H, Watanabe M, Wakakuwa K, Morigiwa K. Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J Neurosci. 1989;9(7):2353–2373.
  • Chalupa LM, Lia B. The nasotemporal division of retinal ganglion cells with crossed and uncrossed projections in the fetal rhesus monkey. J Neurosci. 1991;11(1):191–202.
  • Rapaport DH, Fletcher JT, LaVail MM, Rakic P. Genesis of neurons in the retinal ganglion cell layer of the monkey. J Comp Neurol. 1992;322(4):577–588.
  • Provis JM, van Driel D, Billson FA, Russell P. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J Comp Neurol. 1985;233(4):429–451.
  • Kinnear PE, Jay B, Witkop CJ. Albinism. Surv Ophthalmol. 1985;30(2):75–101.
  • Jeffery G. The albino retina: an abnormality that provides insight into normal retinal development. Trends Neurosci. 1997;20(4):165–169.
  • Stone J, Campion JE, Leicester J. The nasotemporal division of retina in the Siamese cat. J Comp Neurol. 1978;180(4):783–798.
  • Ilia M, Jeffery G. Delayed neurogenesis in the albino retina: evidence of a role for melanin in regulating the pace of cell generation. Brain Res Dev Brain Res. 1996;95(2):176–183.
  • Guillery RW, Hickey TL, Kaas JH, Felleman DJ, Debruyn EJ, Sparks DL. Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops). J Comp Neurol. 1984;226(2):165–183.
  • Drager UC, Olsen JF. Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J Comp Neurol. 1980;191(3):383–412.
  • Shatz CJ, Kliot M. Prenatal misrouting of the retinogeniculate pathway in Siamese cats. Nature. 1982;300(5892):525–529.
  • Thompson ID, Morgan JE. The development of retinal ganglion cell decussation patterns in postnatal pigmented and albino ferrets. Eur J Neurosci. 1993;5(4):341–356.
  • Webster MJ, Rowe MH. Disruption of developmental timing in the albino rat retina. J Comp Neurol. 1991;307(3):460–474.
  • Baker GE, Jeffery G. Distribution of uncrossed axons along the course of the optic nerve and chiasm of rodents. J Comp Neurol. 1989;289(3):455–461.
  • Iwai-Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol. 2016;524(18):3696–3716.
  • Rachel RA, Dolen G, Hayes NL, et al. Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina. J Neurosci. 2002;22(11):4249–4263.
  • Neveu MM, Jeffery G. Chiasm formation in man is fundamentally different from that in the mouse. Eye. 2007;21(10):1264–1270.
  • Lund R. Uncrossed visual pathways of hooded and albino rats. Science. 1965;149(3691):1506–1507.
  • Hubel DH, Wiesel TN. Aberrant visual projections in the Siamese cat. J Physiol. 1971;218(1):33–62.
  • Leventhal AG, Creel DJ. Retinal projections and functional architecture of cortical areas 17 and 18 in the tyrosinase-negative albino cat. J Neurosci. 1985;5(3):795–807.
  • Guillery RW. Visual pathways in albinos. Scientific American. 1974;230(5):44–54.
  • Guillery RW, Okoro AN, Witkop CJ. Abnormal visual pathways in the brain of a human albino. Brain Res. 1975;96(2):373–377.
  • Kirk DL, Levick WR, Cleland BG, Wassle H. Crossed and uncrossed representation of the visual field by brisk-sustained and brisk-transient cat retinal ganglion cells. Vision Res. 1976;16(3):225–231.
  • Leventhal AG. Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats. J Neurosci. 1982;2(8):1024–1042.
  • Kruijt CC, Gradstein L, Bergen AA, Florijn RJ, Arveiler B, Lasseaux E, et al. The Phenotypic and Mutational Spectrum of the FHONDA Syndrome and Oculocutaneous Albinism: Similarities and Differences. Invest Ophthalmol Vis Sci. 2022;63(1):19.
  • van Genderen MM, Riemslag FC, Schuil J, Hoeben FP, Stilma JS, Meire FM. Chiasmal misrouting and foveal hypoplasia without albinism. Br J Ophthalmol. 2006;90(9):1098–1102.
  • Poulter JA, Al-Araimi M, Conte I, et al. Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism. Am J Hum Genet. 2013;93:1143–1150.
  • Schiff ER, Tailor VK, Chan HW, Theodorou M, Webster AR, Moosajee M. Novel Biallelic Variants and Phenotypic Features in Patients with SLC38A8-Related Foveal Hypoplasia. Int J Mol Sci. 2021;22(3):1130.
  • Jeffery G, Perry VH. Evidence for ganglion cell death during development of the ipsilateral retinal projection in the rat. Brain Res. 1981;254(1):176–180.
  • Perry VH, Henderson Z, Linden R. Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J Comp Neurol. 1983;219(3):356–368.
  • Henderson Z. Distribution of ganglion cells in the retina of adult pigmented ferret. Brain Res. 1985;358(1–2):221–228.
  • LaVail JH, Nixon RA, Sidman RL. Genetic control of retinal ganglion cell projections. J Comp Neurol. 1978;182(3):399–421.
  • Balkema GW, Drager UC. Origins of uncrossed retinofugal projections in normal and hypopigmented mice. Vis Neurosci. 1990;4(6):595–604.
  • Gimenez E, Lavado A, Jeffery G, Montoliu L. Regional abnormalities in retinal development are associated with local ocular hypopigmentation. J Comp Neurol. 2005;485(4):338–347.
  • Apkarian P. A practical approach to albino diagnosis. VEP misrouting across the age span. Ophthalmic Paediatr Genet. 1992;13(2):77–88.
  • Kriss A, Russell-Eggitt I, Harris CM, Lloyd IC, Taylor D. Aspects of albinism. Ophthalmic Paediatr Genet. 1992;13(2):89–100.
  • Creel D, Witkop CJ, King RA. Asymmetric visually evoked potentials in human albinos: evidence for visual system anomalies. Invest Ophthalmol. Vis. Sci. 1974;13(6):430–440.
  • Pott JW, Jansonius NM, Kooijman AC. Chiasmal coefficient of flash and pattern visual evoked potentials for detection of chiasmal misrouting in albinism. Doc Ophthalmol. 2003;106(2):137–143.
  • Liasis A, Handley SE, Nischal KK. Occipital Petalia and Albinism: A Study of Interhemispheric VEP Asymmetries in Albinism with No Nystagmus. J Clin Med. 2019;8(6):802.
  • Dorey SE, Neveu MM, Burton LC, Sloper JJ, Holder GE. The clinical features of albinism and their correlation with visual evoked potentials. Br J Ophthalmol. 2003;87(6):767–772.
  • Neveu MM, Jeffery G, Burton LC, Sloper JJ, Holder GE. Age-related changes in the dynamics of human albino visual pathways. Eur J Neurosci. 2003;18(7):1939–1949.
  • Puzniak RJ, Ahmadi K, Kaufmann J, et al. Quantifying nerve decussation abnormalities in the optic chiasm. Neuroimage Clin. 2019;3:24.
  • Liasis A, Handley SE, Nischal KK. Occipital Petalia and Albinism: a Study of Interhemispheric VEP Asymmetries in Albinism with No Nystagmus. J Clin Med. 2019;8(6):802.
  • Sami DA, Saunders D, Thompson DA, et al. The achiasmia spectrum: congenitally reduced chiasmal decussation. Br J Ophthalmol. 2005;89(10):1311–1317.
  • Brecelj J, Sustar M, Pečarič-Meglič N, Skrbec M, Stirn-Kranjc B. VEP characteristics in children with achiasmia, in comparison to albino and healthy children. Doc Ophthalmol. 2012;124(2):109–123.
  • Odom JV, Bach M, Brigell M, et al. International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016;133(1):1–9.
  • Creel D, Spekreijse H, Reits D. Evoked potentials in albinos: efficacy of pattern stimuli in detecting misrouted optic fibers. Electroencephalogr Clin Neurophysiol. 1981;52(6):595–603.
  • Kruijt CC, de Wit GC, Talsma HE, Schalij-Delfos NE, van Genderen MM. The Detection Of Misrouting In Albinism: evaluation of Different VEP Procedures in a Heterogeneous Cohort. Invest Ophthalmol Vis Sci. 2019;60(12):3963–3969.
  • Pott J, Jansonius N, Kooijman A. Chiasmal coefficient of flash and pattern visual evoked potentials for detection of chiasmal misrouting in albinism. Doc Ophthalmol. 2003;106:137–143.
  • Russell-Eggitt I, Kriss A, Taylor DS. Albinism in childhood: a flash VEP and ERG study. Br J Ophthalmol. 1990;74(3):136–140.
  • von Dem Hagen EA, Houston GC, Hoffmann MB, Morland AB. Pigmentation predicts the shift in the line of decussation in humans with albinism. Eur J Neurosci. 2007;25(2):503–511.
  • NeveuMM, Sloper JJ, Moore AT, Jeffery G, Holder GE. Asymmetric Hypopigmentation in Albinism. Invest Ophthalmol Vis Sci. 2011;52(14): 6086.
  • Polyak S. The Vertebrate Visual System. Chicago: University of Chicago Press; 1957a.
  • Bourgeois JP, Rakic P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci. 1993;13(7):2801–2820.
  • Missler M, Wolff A, Merker HJ, Wolff JR. Pre- and postnatal development of the primary visual cortex of the common marmoset. II. Formation, remodelling, and elimination of synapses as overlapping processes. J Comp Neurol. 1993;333(1):53–67.
  • Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional brain development in early childhood. Nat Rev Neurosci. 2018;19(3):123–137.
  • Gibaldi A, Benson NC, Banks MS. Crossed–uncrossed projections from primate retina are adapted to disparities of natural scenes. Proc Natl Acad Sci. 2021;4:118.
  • Rowley CD, Sehmbi M, Bazin PL, et al. Age-related mapping of intracortical myelin from late adolescence to middle adulthood using T1 -weighted MRI. Hum Brain Mapp. 2017;38(7):3691–3703.
  • Owsley C. Aging and vision. Vision Res. 2011;51(13):1610–1622.
  • Almoqbel FM, Irving EL, Leat SJ. Visual acuity and contrast sensitivity development in children: sweep visually evoked potential and psychophysics. Optom Vis Sci. 2017;94(8):830–837.
  • Allard R, Renaud J, Molinatti S, Faubert J. Contrast sensitivity, healthy aging and noise. Vision Res. 2013;92:47–52.
  • Hoon M, Okawa H, Della Santina L, Wong RO. Functional architecture of the retina: development and disease. Prog Retin Eye Res. 2014;42:44–84.
  • Bringmann A, Syrbe S, Görner K, et al. The primate fovea: structure, function and development. Prog Retin Eye Res. 2018;66:49–84.
  • Provis JM, Diaz CM, Dreher B. Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol. 1998;54(5):549–580.
  • Reese BE, Johnson PT, Baker GE. Maturational gradients in the retina of the ferret. J Comp Neurol. 1996;375(2):252–273.
  • Rapaport DH, Stone J. The site of commencement of maturation in mammalian retina: observations in the cat. Brain Res. 1982;281(3):273–279.
  • Stone J, Egan M, Rapaport DH. The site of commencement of retinal maturation in the rabbit. Vision Res. 1985;25(3):309–317.
  • Springer AD, Hendrickson AE. Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing. Vis Neurosci. 2005;22(2):171–185.
  • Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res. 2001;20(6):799–821.
  • O’Brien KMB. Development of the Foveal Specialization. In: Tombran-Tink J, Barnstable CJ, editors. Visual Transduction and Non-Visual Light Perception. Humana Press; 2008:17-33.
  • Sengpiel F, Kind PC. The role of activity in development of the visual system. Curr Biol. 2002;12(23):R818–826.
  • Braekevelt CR, Hollenberg MJ. The development of the retina of the albino rat. Am J Anat. 1970;127(3):281–301.
  • Ilia M, Jeffery G. Retinal mitosis is regulated by dopa, a melanin precursor that may influence the time at which cells exit the cell cycle: analysis of patterns of cell production in pigmented and albino retinae. J Comp Neurol. 1999;405(3):394–405.
  • Guillery RW. Normal and abnormal visual field maps in albinos. Central Effects Non Matching Maps. Ophthalmic Paediatr Genet. 1990;11(3):177–183.
  • Hoffmann MB, Tolhurst DJ, Moore AT, Morland AB. Organization of the visual cortex in human albinism. J Neurosci. 2003;23(26):8921–8930.
  • Hoffmann MB, Seufert PS, Schmidtborn LC. Perceptual relevance of abnormal visual field representations: static visual field perimetry in human albinism. Br J Ophthalmol. 2007;91(4):509–513.
  • Ather S, Proudlock FA, Welton T, et al. Aberrant visual pathway development in albinism: from retina to cortex. Hum Brain Mapp. 2019;40(3):777–788.
  • Sheth V, Gottlob I, Mohammad S, McLean RJ, Proudlock FA. Visual field deficits in albinism. Invest Ophthalmol Vis Sci. 2014;55(13):2659.
  • Alvarez I, Smittenaar R, Handley SE, et al. Altered visual population receptive fields in human albinism. Cortex. 2020;128:107–123.
  • Duwell EJ, Woertz EN, Mathis J, Carroll J, DeYoe EA. Aberrant visual population receptive fields in human albinism. J Vis. 2021;21(5):19.
  • Preising MN, Forster H, Gonser M, Lorenz B. Screening of TYR, OCA2, GPR143, and MC1R in patients with congenital nystagmus, macular hypoplasia, and fundus hypopigmentation indicating albinism. Mol Vis. 2011;17:939–948.
  • Trebušak Podkrajšek K, Stirn Kranjc B, Hovnik T, Kovač J, Battelino T. GPR143 gene mutation analysis in pediatric patients with albinism. Ophthalmic Genet. 2012;33(3):167–170.
  • Simon JW, Kandel GL, Krohel GB, Nelsen PT. Albinotic characteristics in congenital nystagmus. Am J Ophthalmol. 1984;97:320–327.
  • Abadi RV, Pascal E. Periodic alternating nystagmus in humans with albinism. Invest Ophthalmol Vis Sci. 1994;35(12):4080–4086.
  • Gregory-Evans K, Kelsell RE, Gregory-Evans CY, et al. Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase. Ophthalmology. 2000;107(1):55–61.
  • Lorenz B, Gyürüs P, Preising M, et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci. 2000;41(9):2735–2742.
  • Michaelides M, Aligianis IA, Ainsworth JR, et al. Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci. 2004;45(6):1975–1978.
  • Papageorgiou E, McLean RJ, Gottlob I. Nystagmus in childhood. Pediatr Neonatol. 2014;55:341–351.
  • Robson AG, Nilsson J, Li S, et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136(1):1–26.
  • Kurent A, Stirn-Kranjc B, Brecelj J. Electroretinographic characteristics in children with infantile nystagmus syndrome and early-onset retinal dystrophies. Eur J Ophthalmol. 2015 Jan-Feb;25(1):33-42.
  • Aboshiha J, Dubis AM, Carroll J, Hardcastle AJ, Michaelides M. The cone dysfunction syndromes. Br J Ophthalmol. 2016;100(1):115-121.