283
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Effects of Photo-Biomodulation in Stargardt Disease

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 85-91 | Published online: 10 Jan 2022

References

  • Michaelides M, Hunt D, Moore A. The genetics of inherited macular dystrophies. J Med Genet. 2003;40(9):641–650. doi:10.1136/jmg.40.9.641
  • Spiteri Cornish K, Ho J, Downes S, Scott NW, Bainbridge J, Lois N. The epidemiology of stargardt disease in the United Kingdom. Ophthalmol Retina. 2017;1(6):508–513. doi:10.1016/j.oret.2017.03.001
  • Lewis RA, Shroyer NF, Singh N, et al. Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet. 1999;64(2):422–434. doi:10.1086/302251
  • Kniazeva MF, Chiang MF, Cutting GR, Zack DJ, Han M, Zhang K. Clinical and genetic studies of an autosomal dominant cone-rod dystrophy with features of Stargardt disease. Ophthalmic Genet. 1999;20(2):71–81. doi:10.1076/opge.20.2.71.2287
  • Michaelides M, Johnson S, Poulson A, et al. An autosomal dominant bull’s-eye macular dystrophy (MCDR2) that maps to the short arm of chromosome 4. Invest Ophthalmol Vis Sci. 2003;44(4):1657–1662. doi:10.1167/iovs.02-0941
  • Zhao PY, Abalem MF, Nadelman D, et al. Peripheral pigmented retinal lesions in stargardt disease. Am J Ophthalmol. 2018;188:104–110. doi:10.1016/j.ajo.2017.12.011
  • Fishman GA. Fundus flavimaculatus. A clinical classification. Arch Ophthalmol Chic Ill. 1976;94(12):2061–2067. doi:10.1001/archopht.1976.03910040721003
  • Lu LJ, Liu J, Adelman RA. Novel therapeutics for Stargardt disease. Graefes Arch Clin Exp Ophthalmol. 2017;255(6):1057–1062. doi:10.1007/s00417-017-3619-8
  • Karu T. Photobiology of low-power laser effects. Health Phys. 1989;56(5):691–704. doi:10.1097/00004032-198905000-00015
  • Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life. 2010;62(8):607–610. doi:10.1002/iub.359
  • Karu T. Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg. 2010;28(2):159–160. doi:10.1089/pho.2010.2789
  • Milone FF, Bolner A, Nordera GP, Scalinci SZ. Pulsed led’s light at 650 nm promote and at 470 nm suppress melatonin’s secretion. Neurosci Med. 2015;6(1):35–41. doi:10.4236/nm.2015.61006
  • Ivandic BT, Ivandic T. Low-level laser therapy improves vision in patients with age-related macular degeneration. Photomed Laser Surg. 2008;26(3):241–245. doi:10.1089/pho.2007.2132
  • Merry GF, Munk MR, Dotson RS, Walker MG, Devenyi RG. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol. 2017;95(4):e270–e277. doi:10.1111/aos.13354
  • Markowitz SN, Devenyi RG, Munk MR, et al. A double-masked, randomized, sham-controlled, single-center study with photobiomodulation for the treatment of dry age-related macular degeneration. Retina Phila Pa. 2020;40(8):1471–1482. doi:10.1097/IAE.0000000000002632
  • Ivandic BT, Ivandic T. Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia. Photomed Laser Surg. 2012;30(3):167–171. doi:10.1089/pho.2011.3089
  • Ivandic BT, Ivandic T. Low-level laser therapy improves vision in a patient with retinitis pigmentosa. Photomed Laser Surg. 2014;32(3):181–184. doi:10.1089/pho.2013.3535
  • Scalinci SZ, Milone F, Magnifico M, et al. Photobiomodulation (phototherapy) of retinal tissue in Stargardt disease. Invest Ophthalmol Vis Sci. 2015;56(7):5668.
  • Holder GE. Pattern Electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001;20(4):531–561. doi:10.1016/S1350-9462(00)00030-6
  • Schönbach EM, Wolfson Y, Strauss RW, et al. Macular sensitivity measured with microperimetry in stargardt disease in the progression of atrophy secondary to stargardt disease (ProgStar) Study: report No. 7. JAMA Ophthalmol. 2017;135(7):696–703. doi:10.1001/jamaophthalmol.2017.1162