169
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Frequency Doubling Technology Visual Field Loss in Fabry Subjects Related to Retinal Ganglion Cell Function as Explored by ERG and OSOME

ORCID Icon, , &
Pages 1893-1908 | Published online: 09 Jun 2022

References

  • Fuller M, Meikle PJ, Hopwood JJ. Epidemiology of lysosomal storage diseases: an overview. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry Disease: Perspectives from 5 Years of FOS. Oxford: Oxford PharmaGenesis; 2006.
  • Chan B, Adam DN. A review of Fabry disease. Skin Therapy Letter. 2018;23(2):4–6.
  • Vedder AC, Linthorst GE, van Breemen MJ, et al. The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis. 2007;30:68–78. doi:10.1007/s10545-006-0484-8
  • MacDermot KD, Holmes A, Miners A. Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet. 2001;38:750–760. doi:10.1136/jmg.38.11.750
  • Sher NA, Letson RD, Desnick RJ. The ocular manifestations in Fabry’s disease. Arch Ophthalmol. 1979;97:671–676. doi:10.1001/archopht.1979.01020010327008
  • Sodi A, Ioannidis AS, Mehta A, et al. Ocular manifestations of Fabry’s disease: data from the Fabry outcome survey. Br J Ophthalmol. 2007;91:210–214. doi:10.1136/bjo.2006.100602
  • Michaud L. Vascular tortuosities of the upper eyelid: a new clinical finding in fabry patient screening. J Ophthalmol. 2013;2013:207573. doi:10.1155/2013/207573
  • Orssaud C, Dufier JL, Germain DP. Ocular manifestations in Fabry disease: a survey of 32 hemizygous male patients. Ophthalmic Genet. 2003;24:129–139. doi:10.1076/opge.24.3.129.15609
  • Sivley MD. Fabry disease: a review of ophthalmic and systemic manifestations. Optom Vis Sci. 2013;90:e63–78. doi:10.1097/OPX.0b013e31827ec7eb
  • Michaud L. Longitudinal study on ocular manifestations in a cohort of patients with Fabry disease. PLoS One. 2019;14:e0213329. doi:10.1371/journal.pone.0213329
  • Walsh DV, Capó-Aponte JE, Jorgensen-Wagers K, et al. Visual field dysfunctions in warfighters during different stages following blast and non blast mTBI. Mil Med. 2015;180:178–185. doi:10.7205/MILMED-D-14-00230
  • Pitz S, Grube-Einwald K, Renieri G, et al. Subclinical optic neuropathy in Fabry disease. Ophthalmic Genet. 2009;30:165–171. doi:10.3109/13816810903148004
  • Kumagai K, Mitamura Y, Mizunoya S, et al. A case of anterior ischemic optic neuropathy associated with Fabry’s disease. Jpn J Ophthalmol. 2008;52:421–423. doi:10.1007/s10384-008-0572-4
  • Weingeist TA, Blodi FC. Fabry’s disease: ocular findings in a female carrier. A light and electron microscopy study. Arch Ophthalmol. 1971;85:169–176. doi:10.1001/archopht.1971.00990050171010
  • Abe H, Sakai T, Sawaguchi S, et al. Ischemic optic neuropathy in a female carrier with Fabry’s disease. Ophthalmologica. 1992;205:83–88. doi:10.1159/000310318
  • Sher NA, Reiff W, Letson RD, et al. Central retinal artery occlusion complicating Fabry’s disease. Arch Ophthalmol. 1978;96:815–817. doi:10.1001/archopht.1978.03910050421003
  • Barbosa M, Maddess T, Ahn S, et al. Novel morphometric analysis of higher order structure of human radial peri-papillary capillaries: relevance to retinal perfusion efficiency and age. Sci Rep. 2019;9:13464. doi:10.1038/s41598-019-49443-z
  • Bogunovic H, Kwon YH, Rashid A, et al. Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma. Invest Ophthalmol Vis Sci. 2014;56:259–271. doi:10.1167/iovs.14-15885
  • Sousa MC, Biteli LG, Dorairaj S, et al. Suitability of the visual field index according to glaucoma severity. J Curr Glaucoma Pract. 2015;9:65–68. doi:10.5005/jp-journals-10008-1186
  • Fredette MJ, Giguère A, Anderson DR, et al. Comparison of matrix with Humphrey field analyzer II with SITA. Optom Vis Sci. 2015;92:527–536. doi:10.1097/OPX.0000000000000583
  • Medeiros FA, Sample PA, Weinreb RN. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol. 2004;137:863–871. doi:10.1016/j.ajo.2003.12.009
  • Spry PG, Johnson CA, McKendrick AM, et al. Variability components of standard automated perimetry and frequency-doubling technology perimetry. Invest Ophthalmol Vis Sci. 2001;42:1404–1410.
  • Gallemore RP, Baker M, Chou CK, et al. Electrophysiology comes to the clinic. Rev Ophthalmol. 2014;21:e008999.
  • Wilsey LJ, Fortune B. Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol. 2016;27:118–124. doi:10.1097/ICU.0000000000000241
  • Rousseau S, McKerral M, Lachapelle P. The I-wave: bridging flash and pattern electroretinography. Electroencephalogr Clin Neurophysiol Suppl. 1996;46:165–171.
  • Lachapelle P. A POSSIBLE CONTRIBUTION OF THE OPTIC-NERVE TO THE PHOTOPIC OSCILLATORY POTENTIALS. Clin Vis Sci. 1990;5:421–426.
  • Diaconu V. Multichannel spectroreflectometry: a noninvasive method for assessment of on-line hemoglobin derivatives. Appl Opt. 2009;48:D52–61. doi:10.1364/AO.48.000D52
  • Vucea V, Bernard PJ, Sauvageau P, et al. Blood oxygenation measurements by multichannel reflectometry on the venous and arterial structures of the retina. Appl Opt. 2011;50:5185–5191. doi:10.1364/AO.50.005185
  • Diaconu V, Michaud L, Forcier P, et al. Optic Nerve capillaries blood oxygen investigation in Fabry’s disease patients. Inv Opht Vis Sci. 2015;56:2674.
  • Giaconi JAA, Law SK, Coleman AL, et al. Pearls of Glaucoma Management. Springer Berlin Heidelberg; 2010.
  • Yaqub M. Visual fields interpretation in glaucoma: a focus on static automated perimetry. Community Eye Health. 2012;25:1–8.
  • Mizunoya S, Sugawara T, Uekhara J, et al. The Ganglion cell component of the I-wave in the photopic ERG. Invest Ophthalmol Vis Sci. 2007;48(13):4182.
  • Rice ME, Harris GT. Comparing effect sizes in follow-up studies: ROC Area, Cohen’s d, and r. Law Hum Behav. 2005;29(5):615–620. doi:10.1007/s10979-005-6832-7
  • Mahroo OA. Electroretinography can provide objective assessment of inner retinal function prior to atrophic change on OCT. Eye. 2015;29:1513. doi:10.1038/eye.2015.116
  • Diaconu V, Tran VL. Optic nerve capillaries blood oxygenation in normal and primary open-angle Glaucoma subjects. Invest Ophthalmol Vis Sci. 2013;54(15):4456.
  • Michelson G, Scibor M. Intravascular oxygen saturation in retinal vessels in normal subjects and open-angle glaucoma subjects. Acta Ophthalmol Scand. 2006;84:289–295. doi:10.1111/j.1600-0420.2005.00631.x
  • Watson AB. A formula for human retinal ganglion cell receptive field density as a function of visual field location. J Vis. 2014;14:15. doi:10.1167/14.7.15
  • Stampler RL, Lieberman MF, Drake MV. Becker-Scheffer’s Diagnosis and Therapy of the Glaucomas. Saint-Louis: Mosby; 2009:145–150.
  • Riegel EM, Pokorny KS, Friedman AH, et al. Ocular pathology of Fabry’s disease in a hemizygous male following renal transplantation. Surv Ophthalmol. 1982;26:247–252. doi:10.1016/0039-6257(82)90159-X
  • Quigley HA. Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. Am J Ophthalmol. 1998;125:819–829. doi:10.1016/S0002-9394(98)00046-4
  • Rutkowski P, May CA. Nutrition and vascular supply of retinal ganglion cells during human development. Front Neurol. 2016;7:49. doi:10.3389/fneur.2016.00049
  • Minnella AM, Barbano L, Verrecchia E, et al. Macular impairment in Fabry disease: a morpho-functional assessment by swept-source OCT angiography and focal electroretinography. Invest Ophthalmol Vis Sci. 2019;60:2667–2675. doi:10.1167/iovs.18-26052
  • Cennamo G, Di Maio LG, Montorio D, et al. Optical coherence tomography angiography findings in Fabry disease. J Clin Med. 2019;8:528. doi:10.3390/jcm8040528
  • Desnick RJ, Astrin KH, Bishop DF. Fabry disease: molecular genetics of the inherited nephropathy. Adv Nephrol Necker Hosp. 1989;18:113–127.
  • Tuttolomondo A, Pecoraro R, Simonetta I, et al. Anderson-Fabry disease: a multiorgan disease. Curr Pharm Des. 2013;19:5974–5996. doi:10.2174/13816128113199990352
  • Osborne NN, Melena J, Chidlow G, et al. A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol. 2001;85:1252–1259. doi:10.1136/bjo.85.10.1252
  • San Roman I, Rodriguez ME, Caporossi O, et al. Computer assisted retinal vessel tortuosity evaluation in novel mutation Fabry disease: towards new prognostic markers. Retina. 2017;37:592–603. doi:10.1097/IAE.0000000000001177
  • Miller JJ, Aoki K, Reid CA, et al. Rats deficient in α-galactosidase A develop ocular manifestations of Fabry disease. Sci Rep. 2019;9:9392. doi:10.1038/s41598-019-45837-1
  • Rozenfeld PA, Croxatto O, Ebner R, et al. Immunofluorescence detection of globotriaosylceramide deposits in conjunctival biopsies of Fabry disease patients. Clin Exp Ophthalmol. 2006;34:689–694. doi:10.1111/j.1442-9071.2006.01318.x
  • Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical research. J Psychiatr Res. 2011;45:626–629. doi:10.1016/j.jpsychires.2010.10.008
  • Banitt MR, Ventura LM, Feuer WJ, et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013;54:2346–2352. doi:10.1167/iovs.12-11026