192
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Evaluation of the Relationship Between the Changes in the Corneal Biomechanical Properties and Changes in the Anterior Segment OCT Parameters Following Customized Corneal Cross-Linking

, ORCID Icon, , , & ORCID Icon
Pages 1909-1923 | Published online: 09 Jun 2022

References

  • Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293–322. doi:10.1016/0039-6257(84)90094-8
  • Chatzis N, Hafezi F. Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents. J Refract Surg. 2012;28:753–758. doi:10.3928/1081597X-20121011-01
  • Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus. 1994;31:38–40. doi:10.3928/0191-3913-19940101-08
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–627. doi:10.1016/s0002-9394(02)02220-1
  • Hafezi F, Mrochen M, Iseli HP, et al. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35:621–624. doi:10.1016/j.jcrs.2008.10.060
  • Gkika M, Labiris G, Kozobolis V. Corneal collagen cross-linking using riboflavin and ultraviolet-A irradiation: a review of clinical and experimental studies. Int Ophthalmol. 2011;31:309–319. doi:10.1007/s10792-011-9460-x
  • Kolli S, Aslanides IM. Safety and efficacy of collagen crosslinking for the treatment of keratoconus. Expert Opin Drug Saf. 2010;9:949–957. doi:10.1517/14740338.2010.495117
  • Raiskup F, Theuring A, Pillunat LE, et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41:41–46. doi:10.1016/j.jcrs.2014.09.033
  • Raiskup-Wolf F, Hoyer A, Spoerl E, et al. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34:796–801. doi:10.1016/j.jcrs.2007.12.039
  • Schindl A, Rosado-Schlosser B, Trautinger F. Reciprocity regulation in photobiology. An overview. Hautarzt. 2001;52:779–785. doi:10.1007/s001050170065
  • Pinelli R. BAK: a better alternative to epithelium removal in cross linking. Ophthalmol Times Eur. 2006;2:36–38.
  • Scarcelli G, Besner S, Pineda R, et al. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55:4490–4495. doi:10.1167/iovs.14-14450
  • Seiler TG, Fischinger I, Koller T, Zapp D, Frueh BE, Seiler T. Customized corneal cross-linking: one-year results. Am J Ophthalmol. 2016;166:14–21. doi:10.1016/j.ajo.2016.02.029
  • Nishida T, Kojima T, Kataoka T, et al. Comparison of corneal biomechanical properties and corneal tomography between customized and accelerated corneal crosslinking in eyes with keratoconus. Cornea. 2021;40:851–858. doi:10.1097/ICO.0000000000002572
  • Vinciguerra R, Tzamalis A, Romano V, et al. Assessment of the association between in vivo corneal biomechanical changes after corneal cross-linking and depth of demarcation line. J Refract Surg. 2019;35:202–206. doi:10.3928/1081597X-20190124-01
  • Uzel MM, Koc M, Can C, et al. Effect of accelerated corneal crosslinking on ocular response analyzer waveform-derived parameters in progressive keratoconus. Arq Bras Oftalmol. 2019;82:18–24. doi:10.5935/0004-2749.20190003
  • Hallahan KM, Sinha Roy A, Ambrosio R Jr, et al. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121:459–468. doi:10.1016/j.ophtha.2013.09.013
  • Wu Y, Li XL, Yang SL, et al. [Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus]. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51:881–886. Chinese.
  • Ren S, Xu L, Fan Q, et al. Accuracy of new Corvis ST parameters for detecting subclinical and clinical keratoconus eyes in a Chinese population. Sci Rep. 2021;11:4962. doi:10.1038/s41598-021-84370-y
  • Elham R, Jafarzadehpur E, Hashemi H, et al. Keratoconus diagnosis using Corvis ST measured biomechanical parameters. J Curr Ophthalmol. 2017;29:175–181. PMID: 28913507; PMCID: PMC5587249. doi:10.1016/j.joco.2017.05.002
  • Zhao Y, Shen Y, Yan Z, et al. Relationship among corneal stiffness, thickness, and biomechanical parameters measured by corvis ST, pentacam and ORA in keratoconus. Front Physiol. 2019;10:740. PMID: 31263429; PMCID: PMC6585623. doi:10.3389/fphys.2019.00740
  • Koh S, Inoue R, Maeda N, et al. Corneal tomographic changes during corneal rigid gas-permeable contact lens wear in keratoconic eyes. Br J Ophthalmol. 2022;106:197–202. doi:10.1136/bjophthalmol-2020-317057
  • Joda AA, Shervin MM, Kook D, et al. Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Engin. 2016;19:943–953. doi:10.1080/10255842.2015.1077515
  • Yang K, Xu L, Fan Q, et al. Repeatability and comparison of new Corvis ST parameters in normal and keratoconus eyes. Sci Rep. 2019;9(1):15379. doi:10.1038/s41598-019-51502-4
  • Roberts CJ, Mahmoud AM, Bons JP, et al. Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic Scheimpflug analyzer. J Refract Surg. 2017;33:266–273. doi:10.3928/1081597X-20161221-03
  • Eliasy A, Chen KJ, Vinciguerra R, et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: stress–strain index. Front Bioeng Biotechnol. 2019;7:105. doi:10.3389/fbioe.2019.00105
  • Liu G, Rong H, Pei R, et al. Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population. BMC Ophthalmol. 2020;20:436. PMID: 33143686; PMCID: PMC7607623. doi:10.1186/s12886-020-01704-6
  • Zhao W, Shen Y, Jian W, et al. Comparison of corneal biomechanical properties between post-LASIK ectasia and primary keratoconus. J Ophthalmol. 2020;2020:5291485. doi:10.1155/2020/5291485
  • Tiveron MC Jr, Pena CRK, Hida RY, et al. Topographic outcomes after corneal collagen crosslinking in progressive keratoconus: 1-year follow-up. Arq Bras Oftalmol. 2017;80:93–96. doi:10.5935/0004-2749.20170023
  • Soeters N, van der Valk R, Tahzib NG. Corneal cross-linking for treatment of progressive keratoconus in various age groups. J Refract Surg. 2014;30:454–460. PMID: 24892379. doi:10.3928/1081597X-20140527-03
  • Vinciguerra R, Romano MR, Camesasca FI, et al. Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology. 2013;120:908–916. PMID: 23290750. doi:10.1016/j.ophtha.2012.10.023
  • Grišević S, Gilevska F, Biščević A, et al. Cross-linking treatment for better visual acuity. Med Glas. 2020;17:123–128. doi:10.17392/1071-20
  • Godefrooij DA, Boom K, Soeters N, et al. Predictors for treatment outcomes after corneal crosslinking for keratoconus: a validation study. Int Ophthalmol. 2017;37:341–348. doi:10.1007/s10792-016-0262-z
  • Greenstein SA, Fry KL, Hersh PS. Effect of topographic cone location on outcomes of corneal collagen cross-linking for keratoconus and corneal ectasia. J Refract Surg. 2012;28:397–405. doi:10.3928/1081597X-20120518-02
  • Tian M, Ma P, Zhou W, et al. Outcomes of corneal crosslinking for central and paracentral keratoconus. Medicine. 2017;96:e6247. doi:10.1097/MD.0000000000006247
  • Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31:146–155. doi:10.1016/j.jcrs.2004.09.031
  • Kasumovic SS, Mavija M, Kasumovic A, et al. Intraocular pressure measurements referring to the corneal thickness in keratoconic eyes after corneal crosslinking with riboflavin and ultraviolet A. Med Arch. 2015;69:334–338. doi:10.5455/medarh.2015.69.334-338
  • Jabbarvand M, Moravvej Z, Shahraki K, et al. Corneal biomechanical outcome of collagen cross-linking in keratoconic patients evaluated by Corvis ST. Eur J Ophthalmol. 2021;31:1577–1583. doi:10.1177/1120672120944798
  • Salouti R, Khalili MR, Zamani M, Ghoreyshi M, Nowroozzadeh MH. Assessment of the changes in corneal biomechanical properties after collagen cross-linking in patients with keratoconus. J Curr Ophthalmol. 2019;31:262–267. doi:10.1016/j.joco.2019.02.002
  • Hashemi H, Ambrósio R Jr, Vinciguerra R, et al. Two-year changes in corneal stiffness parameters after accelerated corneal cross-linking. J Biomech. 2019;93:209–212. doi:10.1016/j.jbiomech.2019.06.011
  • Tutchenko L, Patel S, Skovron M, et al. The effect of corneal crosslinking on the rigidity of the cornea estimated using a modified algorithm for the Schiøtz tonometer. Indian J Ophthalmol. 2021;69:1531–1536. PMID: 34011736; PMCID: PMC8302317. doi:10.4103/ijo.IJO_1820_20
  • Spadea L, Tonti E, Vingolo EM. Corneal stromal demarcation line after collagen cross-linking in corneal ectatic diseases: a review of the literature. Clin Ophthalmol. 2016;10:1803–1810. doi:10.2147/OPTH.S117372
  • Kamiya K, Kanayama S, Takahashi M, et al. Visual and topographic improvement with epithelium-on, oxygen-supplemented, customized corneal cross-linking for progressive keratoconus. J Clin Med. 2020;9:3222. doi:10.3390/jcm9103222